@article{TIMM_2021_27_3_a11,
author = {S. A. Nikitina and V. I. Ukhobotov},
title = {A scalar problem of stock control under fuzzy demand},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {152--162},
year = {2021},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a11/}
}
S. A. Nikitina; V. I. Ukhobotov. A scalar problem of stock control under fuzzy demand. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 152-162. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a11/
[1] Propoi A. I., Elementy teorii optimalnykh diskretnykh protsessov, Nauka, M., 1973, 256 pp.
[2] Negoitse K.V., Primenenie teorii sistem k problemam upravleniya, Mir, M., 1981, 179 pp.
[3] Bellman R., Dinamicheskoe programmirovanie, Inostrannaya literatura, M., 1960, 400 pp.
[4] Pontryagin L.R., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969, 384 pp.
[5] Shorikov A.F., Minimaksnoe otsenivanie i upravlenie v diskretnykh dinamicheskikh sistemakh, Izd-vo Ural. un-ta, Ekaterinburg, 1997, 242 pp.
[6] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.
[7] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp.
[8] Shorikov A.F., “Algoritm adaptivnogo minimaksnogo upravleniya dlya protsessa presledovaniya-ukloneniya v diskretnykh sistemakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 6:2 (2000), 515–535
[9] Wang Y., Xu L., “Dynamics and Control on a Discrete Multi-Inventory System”, J. Control Sci. Eng., 2019 (2019), Art. ID: 6926342, 1–7 | DOI
[10] Nikitina S.A., Ukhobotov V.I., “Ob odnoi zadache upravleniya zapasami pri nalichii pomekhi”, Chelyabinskii fiz.-mat. zhurnal, 5:3 (2020), 306–315 | DOI | Zbl
[11] Baidosov V.A., “Differentsialnaya igra s nechetkim tselevym mnozhestvom i nechetkimi nachalnymi pozitsiyami”, Prikl. matematika i mekhanika, 53:1 (1989), 60–65
[12] Baidosov V.A., “O zadache sblizheniya v differentsialnoi igre s odnim chastnym vidom nechetkogo tselevogo mnozhestva”, Upravlenie v dinamicheskikh sistemakh, sb. statei, UrO AN SSSR, Sverdlovsk, 1990, 12–17
[13] Seidi M., Hajiaghamemar M., Segee B., “Fuzzy sontrol systems: LMI-based design”, Fuzzy Controllers - Recent Advances in Theory and Applications, 2012, 441–464 | DOI
[14] Zade L.A., Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii, Mir, M., 1976, 165 pp.
[15] Ukhobotov V.I., Izbrannye glavy teorii nechetkikh mnozhestv, ucheb. posobie, Izd-vo Chelyab. gos. un-ta, Chelyabinsk, 2011, 245 pp.
[16] Ukhobotov V.I., “Nepreryvnaya igra v prostranstve s nepolnoi lineinoi strukturoi”, Izv. AN. Teoriya i sistemy upravleniya, 1997, no. 2, 107–109 | Zbl
[17] Ukhobotov V.I., “Stabilnoe svoistvo operatora programmnogo pogloscheniya v igrakh s prostym dvizheniem i s vypukloi tselyu v prostranstvakh s nepolnoi lineinoi strukturoi”, Vest. Chelyab. un-ta. Ser. Matematika. Mekhanika. Informatika, 2003, no. 2(8), 181–189
[18] Rokafellar R., Vypuklyi analiz, Nauka, 1973, 469 pp.