A scalar problem of stock control under fuzzy demand
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 152-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A scalar discrete dynamic problem of stock control is considered. It is assumed that the information about the demand for goods comes at each discrete moment in time in the form of a fuzzy number that belongs to a given base of fuzzy numbers. The control is sought in the class of real numbers. At each time, the amount of available goods is characterized by a fuzzy number. The aim of the control is to guarantee that the value of the membership function of the amount of goods realized at a given time calculated on the desired value of the amount of goods is not less than a given real number. We construct a set of initial stocks of goods such that for each of them it is possible to form a control that fulfills the aim for any realization of a fuzzy query. If the value of the initial stock of goods does not belong to this set, then there is an algorithm for generating a demand under which the aim of the control cannot be achieved.
Keywords: discrete system, stock management problem, fuzzy demand information.
@article{TIMM_2021_27_3_a11,
     author = {S. A. Nikitina and V. I. Ukhobotov},
     title = {A scalar problem of stock control under fuzzy demand},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {152--162},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a11/}
}
TY  - JOUR
AU  - S. A. Nikitina
AU  - V. I. Ukhobotov
TI  - A scalar problem of stock control under fuzzy demand
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 152
EP  - 162
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a11/
LA  - ru
ID  - TIMM_2021_27_3_a11
ER  - 
%0 Journal Article
%A S. A. Nikitina
%A V. I. Ukhobotov
%T A scalar problem of stock control under fuzzy demand
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 152-162
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a11/
%G ru
%F TIMM_2021_27_3_a11
S. A. Nikitina; V. I. Ukhobotov. A scalar problem of stock control under fuzzy demand. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 152-162. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a11/

[1] Propoi A. I., Elementy teorii optimalnykh diskretnykh protsessov, Nauka, M., 1973, 256 pp.

[2] Negoitse K.V., Primenenie teorii sistem k problemam upravleniya, Mir, M., 1981, 179 pp.

[3] Bellman R., Dinamicheskoe programmirovanie, Inostrannaya literatura, M., 1960, 400 pp.

[4] Pontryagin L.R., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969, 384 pp.

[5] Shorikov A.F., Minimaksnoe otsenivanie i upravlenie v diskretnykh dinamicheskikh sistemakh, Izd-vo Ural. un-ta, Ekaterinburg, 1997, 242 pp.

[6] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp.

[7] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp.

[8] Shorikov A.F., “Algoritm adaptivnogo minimaksnogo upravleniya dlya protsessa presledovaniya-ukloneniya v diskretnykh sistemakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 6:2 (2000), 515–535

[9] Wang Y., Xu L., “Dynamics and Control on a Discrete Multi-Inventory System”, J. Control Sci. Eng., 2019 (2019), Art. ID: 6926342, 1–7 | DOI

[10] Nikitina S.A., Ukhobotov V.I., “Ob odnoi zadache upravleniya zapasami pri nalichii pomekhi”, Chelyabinskii fiz.-mat. zhurnal, 5:3 (2020), 306–315 | DOI | Zbl

[11] Baidosov V.A., “Differentsialnaya igra s nechetkim tselevym mnozhestvom i nechetkimi nachalnymi pozitsiyami”, Prikl. matematika i mekhanika, 53:1 (1989), 60–65

[12] Baidosov V.A., “O zadache sblizheniya v differentsialnoi igre s odnim chastnym vidom nechetkogo tselevogo mnozhestva”, Upravlenie v dinamicheskikh sistemakh, sb. statei, UrO AN SSSR, Sverdlovsk, 1990, 12–17

[13] Seidi M., Hajiaghamemar M., Segee B., “Fuzzy sontrol systems: LMI-based design”, Fuzzy Controllers - Recent Advances in Theory and Applications, 2012, 441–464 | DOI

[14] Zade L.A., Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii, Mir, M., 1976, 165 pp.

[15] Ukhobotov V.I., Izbrannye glavy teorii nechetkikh mnozhestv, ucheb. posobie, Izd-vo Chelyab. gos. un-ta, Chelyabinsk, 2011, 245 pp.

[16] Ukhobotov V.I., “Nepreryvnaya igra v prostranstve s nepolnoi lineinoi strukturoi”, Izv. AN. Teoriya i sistemy upravleniya, 1997, no. 2, 107–109 | Zbl

[17] Ukhobotov V.I., “Stabilnoe svoistvo operatora programmnogo pogloscheniya v igrakh s prostym dvizheniem i s vypukloi tselyu v prostranstvakh s nepolnoi lineinoi strukturoi”, Vest. Chelyab. un-ta. Ser. Matematika. Mekhanika. Informatika, 2003, no. 2(8), 181–189

[18] Rokafellar R., Vypuklyi analiz, Nauka, 1973, 469 pp.