On internal estimates of reachable sets for continuous-discrete systems with discrete memory
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 141-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear continuous–discrete functional differential system with discrete memory is considered. The aim of the control is given by means of a finite collection of linear functionals with prescribed target values. The state and control variables are constrained by a system of linear pointwise and integral inequalities. A detailed description is given for the main relations and algorithms, which make it possible to derive an internal (lower by inclusion) estimate for the set of all target values attainable on the trajectories of the system under given constraints. The key constructions are based on the systematic use of the Cauchy operator of the continuous–discrete system. Various typical constraints are described and reduced to a unified form. Piecewise constant program controls are used in the construction of lower (by inclusion) estimates for the set of attainable values of objective functionals. The proposed estimates result from the solution of a special series of linear programs. The program controls that realize the conditional extremal target values are described.
Keywords: linear systems with aftereffect, hybrid systems, control problems, reachable sets.
@article{TIMM_2021_27_3_a10,
     author = {V. P. Maksimov},
     title = {On internal estimates of reachable sets for continuous-discrete systems with discrete memory},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {141--151},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a10/}
}
TY  - JOUR
AU  - V. P. Maksimov
TI  - On internal estimates of reachable sets for continuous-discrete systems with discrete memory
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 141
EP  - 151
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a10/
LA  - ru
ID  - TIMM_2021_27_3_a10
ER  - 
%0 Journal Article
%A V. P. Maksimov
%T On internal estimates of reachable sets for continuous-discrete systems with discrete memory
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 141-151
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a10/
%G ru
%F TIMM_2021_27_3_a10
V. P. Maksimov. On internal estimates of reachable sets for continuous-discrete systems with discrete memory. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 141-151. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a10/

[1] Gusev M.I., Osipov I.O., “Asimptoticheskoe povedenie mnozhestv dostizhimosti na malykh vremennykh promezhutkakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:3 (2019), 86–99 | DOI

[2] Rodina L.I., Khammadi A.Kh., “Statistical characteristics of attainability set of controllable systems with random coefficients”, Russian Math. (Iz. VUZ), 58:11 (2014), 43–53 | DOI | Zbl

[3] Patsko V.S., Fedotov A.A., “Struktura mnozhestva dostizhimosti dlya mashiny Dubbinsa so strogo odnostoronnim povorotom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:3 (2019), 171–187 | DOI

[4] Polyak B.T., “Convexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dynamics of continuous, discrete and impulsive systems, Ser. A. Math. Analysis, 11, no. 2–3, Watam Press, 2004, 255–267

[5] Patsko V.S., Starodubtsev I.S., Fedotov A.A., “Fizicheskaya vizualizatsiya mnozhestv dostizhimosti v zadachakh upravleniya”, Tr. Yubileinoi 25-i Mezhdunar. nauch. konf. (GRAFIKON'2015), ANO “Institut fiziko-tekhnicheskoi informatiki”, Protvino, 2015, 22–27

[6] Maksimov V.P., “On the $\ell$-attainability sets of continuous discrete functional differential systems”, IFAC PapersOnLine, 51:32 (2018), 310–313 | DOI

[7] Maksimov V.P., “Dostizhimye znacheniya tselevykh funktsionalov v zadachakh ekonomicheskoi dinamiki”, Prikl. matematika i voprosy upravleniya, 2019, no. 4, 124–135 | DOI

[8] Maksimov V.P., “O postroenii programmnykh upravlenii v zadache o dostizhimykh znacheniyakh tselevykh funktsionalov dlya dinamicheskikh modelei ekonomiki s diskretnoi pamyatyu”, Prikl. matematika i voprosy upravleniya, 2020, no. 3, 89–104 | DOI

[9] Maksimov V.P., “The structure of the Cauchy operator to a linear continuous-discrete functional differential system with aftereffect and some properties of its components”, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 29:1 (2019), 40–51 | DOI | Zbl

[10] Maksimov V.P., “On a class of linear continuous-discrete systems with discrete memory”, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 30:3 (2020), 385–395 | DOI

[11] Krein M.G., Nudel'man A.A., The Markov moment problem and extremal problems, AMS, N Y, 1977, 417 pp. | Zbl

[12] Maksimov V.P., “Conditional optimal control in enclosing solutions to boundary value problems with an uncertainty”, Functional Differential Equations, 27:3–4 (2020), 95–101 | DOI | Zbl