@article{TIMM_2021_27_3_a10,
author = {V. P. Maksimov},
title = {On internal estimates of reachable sets for continuous-discrete systems with discrete memory},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {141--151},
year = {2021},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a10/}
}
TY - JOUR AU - V. P. Maksimov TI - On internal estimates of reachable sets for continuous-discrete systems with discrete memory JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 141 EP - 151 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a10/ LA - ru ID - TIMM_2021_27_3_a10 ER -
V. P. Maksimov. On internal estimates of reachable sets for continuous-discrete systems with discrete memory. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 141-151. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a10/
[1] Gusev M.I., Osipov I.O., “Asimptoticheskoe povedenie mnozhestv dostizhimosti na malykh vremennykh promezhutkakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:3 (2019), 86–99 | DOI
[2] Rodina L.I., Khammadi A.Kh., “Statistical characteristics of attainability set of controllable systems with random coefficients”, Russian Math. (Iz. VUZ), 58:11 (2014), 43–53 | DOI | Zbl
[3] Patsko V.S., Fedotov A.A., “Struktura mnozhestva dostizhimosti dlya mashiny Dubbinsa so strogo odnostoronnim povorotom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:3 (2019), 171–187 | DOI
[4] Polyak B.T., “Convexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dynamics of continuous, discrete and impulsive systems, Ser. A. Math. Analysis, 11, no. 2–3, Watam Press, 2004, 255–267
[5] Patsko V.S., Starodubtsev I.S., Fedotov A.A., “Fizicheskaya vizualizatsiya mnozhestv dostizhimosti v zadachakh upravleniya”, Tr. Yubileinoi 25-i Mezhdunar. nauch. konf. (GRAFIKON'2015), ANO “Institut fiziko-tekhnicheskoi informatiki”, Protvino, 2015, 22–27
[6] Maksimov V.P., “On the $\ell$-attainability sets of continuous discrete functional differential systems”, IFAC PapersOnLine, 51:32 (2018), 310–313 | DOI
[7] Maksimov V.P., “Dostizhimye znacheniya tselevykh funktsionalov v zadachakh ekonomicheskoi dinamiki”, Prikl. matematika i voprosy upravleniya, 2019, no. 4, 124–135 | DOI
[8] Maksimov V.P., “O postroenii programmnykh upravlenii v zadache o dostizhimykh znacheniyakh tselevykh funktsionalov dlya dinamicheskikh modelei ekonomiki s diskretnoi pamyatyu”, Prikl. matematika i voprosy upravleniya, 2020, no. 3, 89–104 | DOI
[9] Maksimov V.P., “The structure of the Cauchy operator to a linear continuous-discrete functional differential system with aftereffect and some properties of its components”, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 29:1 (2019), 40–51 | DOI | Zbl
[10] Maksimov V.P., “On a class of linear continuous-discrete systems with discrete memory”, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 30:3 (2020), 385–395 | DOI
[11] Krein M.G., Nudel'man A.A., The Markov moment problem and extremal problems, AMS, N Y, 1977, 417 pp. | Zbl
[12] Maksimov V.P., “Conditional optimal control in enclosing solutions to boundary value problems with an uncertainty”, Functional Differential Equations, 27:3–4 (2020), 95–101 | DOI | Zbl