An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 12-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Pfaff equations with continuous coefficients are considered. A specific Cauchy problem for a Pfaff equation is transformed to an equivalent system of integral equations of a special type, which is overdetermined. It is shown that in the case of smooth coefficients the consistency of the system is equivalent to the Frobenius integrability criterion. A theorem on the existence of a solution for the obtained type of integral equations is presented. The solution is found by the Euler polygonal method, which allows one to construct an approximate solution of the Pfaff equation. An analog of Nagumo's theorem on the uniqueness of the solution to the Cauchy problem is also given.
Mots-clés : Pfaff equation, Euler polygonal lines
Keywords: integral equation, consistency of a system, Frobenius criterion, existence theorem, uniqueness of solution, Nagumo condition.
@article{TIMM_2021_27_3_a1,
     author = {A. A. Azamov and A. Begaliev},
     title = {An {Existence} {Theorem} and an {Approximate} {Solution} {Method} for a {Pfaff} {Equation} with {Continuous} {Coefficients}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {12--24},
     year = {2021},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a1/}
}
TY  - JOUR
AU  - A. A. Azamov
AU  - A. Begaliev
TI  - An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 12
EP  - 24
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a1/
LA  - ru
ID  - TIMM_2021_27_3_a1
ER  - 
%0 Journal Article
%A A. A. Azamov
%A A. Begaliev
%T An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 12-24
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a1/
%G ru
%F TIMM_2021_27_3_a1
A. A. Azamov; A. Begaliev. An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 3, pp. 12-24. http://geodesic.mathdoc.fr/item/TIMM_2021_27_3_a1/

[1] Cartan E., “Sur centaines expressions differentielles et le probleme de Pfaff”, Ann. Sci. deE, N.S., 16:3 (1899), 239–332 | Zbl

[2] Han C.K., “Pfaffian systems of Frobenius type and solvability of generic overdetermined PDE systems”, Symmetries and Overdetermined Systems of Partial Differential Equations, The IMA Volumes Math. Appl., 144, eds. M. Eastwood, W. Miller, 421–429 | DOI | Zbl

[3] Jouanolou J.P., Equations de Pfaff algebriques, Lecture Notes in Math., 708, Springer, Berlin, 1979, 255 pp. | DOI | Zbl

[4] Howard R., Methods of thermodynamics, Blaisdell Publ. Comp., NY, 1965, 233 pp.

[5] Godbiion K., Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1973, 188 pp.

[6] Rashevskii P.K., Geometricheskaya teoriya uravnenii s chastnymi proizvodnymi, Gostekhizdat, M.; Leningrad, 1947, 354 pp.

[7] Shutts B., Geometricheskie metody matematicheskoi fiziki, Mir, M., 1984, 304 pp.

[8] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971, 392 pp.

[9] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp.

[10] Tamura I., Teoriya sloenii, Mir, M., 1979, 320 pp.

[11] Bedford E., Kalka M., “Foliations and complex Monge-Ampere equations”, Comm. On Pure and Appl. Math., 30 (1991), 543–571 | DOI

[12] Luzatto S., Türeli S., War K., A Frobenius theorem for corank-1 continuous distributions in dimensions two and three, 11 Apr 2016, 1411, 29 pp., arXiv: math.1411.5896v5

[13] Popescu P., Popescu M., “Some aspects concerning the dynamics given by Pfaff forms”, Physics AUC, 21 (2011), 195–202

[14] Hakopian H.A., Tonoyan M.G., “Partial differential analogs of ordinary differential equations and systems”, New York J. Math., 10 (2004), 89–116 | Zbl

[15] Vasilevich N.D., Prokhorovich T.N., “Lineinaya sistema Pfaffa trekh uravnenii na $CP^m$”, Differents. uravneniya, 39:6 (2003), 848–849 | Zbl

[16] Brunella M., Gustavo M.L., “Bounding the degree of solutions to Pfaff equations”, Publ. Mat., 44:2 (2000), 593–604 | DOI | Zbl

[17] Cerveau D., Lins-Neto A., “Holomorphic foliations in $CP(2)$ having an invariant algebraic curve”, Ann. Inst. Fourier, 41:5 (1991), 883–903 | DOI

[18] Coutinho S.C., “A constructive proof of the density of algebraic Pfaff equations without algebraic solutions”, Ann. Inst. Fourier, 57:5 (2007), 1611–1621 | DOI | Zbl

[19] Mendes L.G., “Bounding the degree of solutions to Pfaff equations”, Publ. Mat., 44:2 (2000), 593–604 | DOI | Zbl

[20] Zoladek H., “On algebraic solutions of algebraic Pfaff equations”, Studia Math., 114:2 (1995), 117–126 | DOI | Zbl

[21] Izobov N.A., “O suschestvovanii lineinykh sistem Pfaffa s mnozhestvom nizhnikh kharakteristicheskikh vektorov polozhitelnoi ploskoi mery”, Differents. uravneniya, 33:12 (1997), 1623–1630 | Zbl

[22] Izobov N.A., Platonov A.S., “Postroenie lineinogo uravneniya Pfaffa s proizvolno zadannymi kharakteristicheskim i nizhnim kharakteristicheskim mnozhestvami”, Differents. uravneniya, 34:12 (1998), 1596–1603 | Zbl

[23] Spichekova N. V., “O povedenii integralnykh poverkhnostei odnogo uravneniya Pfaffa, imeyuschego nezamknutuyu osobuyu krivuyu”, Differents. uravneniya, 41:10 (2005), 1429–1432 | Zbl

[24] Lefshets S., Geometricheskaya teoriya differentsialnykh uravnenii, Inostrannaya literatura, M., 1961, 388 pp.

[25] Azamov A., Suvsanov Sh., Tilavov A., “Studing of behavior at infinity of vector fields on Poincare's sphere: revisited”, Qualitative theory of dynamical systems, 15:1 (2016), 211–220 | DOI | Zbl

[26] Dryuma V., “On geometrical properties of the spaces defined by the Pfaff equations”, Buletinul Academiei de stiiente. A Republicii Moldova. Matemetica Number, 47:1 (2005), 69–84 | Zbl

[27] Musen P., On the application of Pfaff's method in the theory of variation of astronomical constants, NASA Technical Note D-2301, Goddard Space Flight Center, Greenbelt, MD, 1964

[28] Mardare S., “On Pfaff systems with $L^p$ coefficients in dimension two”, C.R. Acad. Sci. Paris. Ser., no. 340, 2005, 879–884 | DOI | Zbl

[29] Mardare S., “On Pfaff systems with $L^p$ coefficients and their applications in differential geometry”, J. Math. Pures. Appl., 84:12 (2005), 1659–1692 | DOI | Zbl

[30] Azamov A.A., Begaliyev A.O., “Existence and uniqueness of the solution of a Cauchy problem for the Pfaff equation with continuous coefficients”, Uzb. Math. J., 2019, no. 2, 18–26 | DOI | Zbl

[31] Gaishun I.V., Vpolne razreshimye mnogomernye differentsialnye uravneniya, Editorial URSS, M., 2004, 272 pp.

[32] Siu Y.T., Partial differential equations with compatibility condition URL: https://www.coursehero.com/file/8864495/Lecture-notes-1/

[33] Arutyunov A.V., Lektsii po vypuklomu i mnogoznachnomu analizu, Fizmatlit, M., 2014, 184 pp.

[34] Edwards R.E., Functional analysis: Theory and applications, Holt, Rhinehart and Winston, NY, 1965, 783 pp. | Zbl

[35] Koddington E.A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Inostrannaya literatura, M., 1958, 475 pp.

[36] Cid J.A., “On uniqueness criteria for systems of ordinary differential equations”, J. Math. Anal. Appl., 281:1 (2003), 264–275 | DOI | Zbl

[37] Mejstrik T., “Some remarks on Nagumo's theorem”, Czechoslovak Math. J., 62:1 (2012), 235–242 | DOI | Zbl