On the uniqueness of a solution to the problem of finding a composite source in the heat equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 120-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An initial–boundary value problem is considered for a two-dimensional heat equation with a source. The source is composite; namely, it is the sum of two unknown functions of spatial variables multiplied by given power functions of time. An inverse problem is posed, which consists in determining the two unknown functions from additional information about the solution of the initial–boundary value problem, which is a function of time and of one of the spatial variables. It is shown that such an inverse problem has an infinite set of solutions in the general case. Theorems on the uniqueness of a solution of the inverse problem in some special classes of unknown functions are proved.
Keywords: heat equation, unknown source, inverse problem, uniqueness of solution.
@article{TIMM_2021_27_2_a9,
     author = {A. M. Denisov},
     title = {On the uniqueness of a solution to the problem of finding a composite source in the heat equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {120--127},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a9/}
}
TY  - JOUR
AU  - A. M. Denisov
TI  - On the uniqueness of a solution to the problem of finding a composite source in the heat equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 120
EP  - 127
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a9/
LA  - ru
ID  - TIMM_2021_27_2_a9
ER  - 
%0 Journal Article
%A A. M. Denisov
%T On the uniqueness of a solution to the problem of finding a composite source in the heat equation
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 120-127
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a9/
%G ru
%F TIMM_2021_27_2_a9
A. M. Denisov. On the uniqueness of a solution to the problem of finding a composite source in the heat equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 120-127. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a9/

[1] Tikhonov A.N., “Teoremy edinstvennosti dlya uravneniya teploprovodnosti”, Dokl. AN SSSR, 1:5 (1935), 294–300 | Zbl

[2] Lavrentev M.M., Romanov V.G., Shishatskii S.P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, Novosibirsk, 1980, 285 pp. | MR

[3] Romanov V.G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984, 252 pp.

[4] Alifanov O.M., Obratnye zadachi teploobmena, Mashinostroenie, M., 1988, 280 pp.

[5] Denisov A.M., Vvedenie v teoriyu obratnykh zadach, MGU, M., 1994, 206 pp. | MR

[6] Osipov Yu.S., Vasilev F.P., Potapov M.M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999, 238 pp.

[7] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., “Obratnye zadachi dinamiki dlya parabolicheskikh sistem”, Differents. uravneniya, 36:5 (2000), 579–597 | MR | Zbl

[8] Prilepko A.I., Orlovsky D.G., Vasin I.V., Methods for solving inverse problems in mathematical physics, Marcel Dekker, N Y, 2000, 744 pp. | MR | Zbl

[9] Isakov V., Inverse problems for partial differential equations, Springer, N Y, 2006, 406 pp. | MR | Zbl

[10] Kabanikhin S.I., Obratnye i nekorrektnye zadachi, Izd-vo SO RAN, Novosibirsk, 2018, 512 pp.

[11] Lavrentev M.M., Romanov V.G., Vasilev V.G., Mnogomernye obratnye zadachi dlya differentsialnykh uravnenii, Nauka, Novosibirsk, 1969, 67 pp.

[12] Cannon J.R., Perez-Esteva S., “Uniqueness and stability of 3d heat sources”, Inverse Problems, 7:1 (1991), 57–62 | DOI | MR | Zbl

[13] Prilepko A.I., Kostin A.B., “O nekotorykh obratnykh zadachakh dlya parabolicheskikh uravnenii s finalnym i integralnym nablyudeniem”, Mat. sb., 183:4 (1992), 49–68 | Zbl

[14] Cannon J.R., Du Chateau P., “Structural identification of an unknown source term in a heat equation”, Inverse Problems, 14:3 (1998), 535–551 | DOI | MR | Zbl

[15] Prilepko A.I., Tkachenko D.S., “Svoistva reshenii parabolicheskogo uravneniya i edinstvennost resheniya obratnoi zadachi ob istochnike s integralnym pereopredeleniem”, Zhurn. vychislit. matematiki i mat. fiziki, 43:4 (2003), 562–570 | MR | Zbl

[16] Choulli M., Yamamoto M., “Conditional stability in determining a heat source”, J. Inverse Ill-Posed Pr., 12:3 (2004), 233–243 | DOI | MR | Zbl

[17] Denisov A.M., “Zadachi opredeleniya neizvestnogo istochnika v parabolicheskom i giperbolicheskom uravneniyakh”, Zhurn. vychislit. matematiki i mat. fiziki, 55:5 (2015), 830–835 | DOI | Zbl

[18] Denisov A.M., “Edinstvennost i needinstvennost resheniya zadachi opredeleniya istochnika v uravnenii teploprovodnosti”, Zhurn. vychislit. matematiki i mat. fiziki, 56:10 (2016), 1737–1742 | DOI | Zbl

[19] Solovev V.V., “Ob opredelenii istochnikov s kompaktnymi nositelyami v ogranichennoi oblasti na ploskosti dlya uravneniya teploprovodnosti”, Zhurn. vychislit. matematiki i mat. fiziki, 58:5 (2018), 778–789 | DOI

[20] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966, 352 pp.