Optimal states of distributed exploited populations with periodic impulse selection
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 99-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The dynamics of a population distributed on a torus is described by an equation of the Kolmogorov–Petrovsky–Piskunov–Fisher type in the divergence form. The population is exploited by periodic sampling of a constant distributed measurable ratio of its density. We prove that there exists a sampling ratio maximizing the time-averaged income in kind, i.e., a ratio that provides an optimal stationary exploitation in the long run.
Keywords: distributed population, Kolmogorov–Petrovsky–Piskunov–Fisher equation, impulse control
Mots-clés : optimal solution.
@article{TIMM_2021_27_2_a7,
     author = {A. A. Davydov and D. A. Melnik},
     title = {Optimal states of distributed exploited populations with periodic impulse selection},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {99--107},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a7/}
}
TY  - JOUR
AU  - A. A. Davydov
AU  - D. A. Melnik
TI  - Optimal states of distributed exploited populations with periodic impulse selection
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 99
EP  - 107
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a7/
LA  - ru
ID  - TIMM_2021_27_2_a7
ER  - 
%0 Journal Article
%A A. A. Davydov
%A D. A. Melnik
%T Optimal states of distributed exploited populations with periodic impulse selection
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 99-107
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a7/
%G ru
%F TIMM_2021_27_2_a7
A. A. Davydov; D. A. Melnik. Optimal states of distributed exploited populations with periodic impulse selection. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 99-107. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a7/

[1] Aseev S.M., Besov K.O., Kaniovskii S.Yu., “Optimizatsiya ekonomicheskogo rosta v modeli Dasgupty - Khila - Solou - Stiglitsa pri nepostoyannoi otdache ot rasshireniya masshtabov proizvodstva”, Tr. MIAN, 304 (2019), 83–122 | Zbl

[2] Aseev S.M., Velov V.M., “Drugoi vzglyad na printsip maksimuma dlya zadach optimalnogo upravleniya s beskonechnym gorizontom v ekonomike”, Uspekhi mat. nauk, 74:6 (450) (2019), 3–54 | MR | Zbl

[3] Belyakov A.O., Davydov A.A., “Optimizatsiya effektivnosti tsiklicheskogo ispolzovaniya vozobnovlyaemogo resursa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 38–46

[4] Berestycki H., Francois H., Roques L., “Analysis of the periodically fragmented environment model: I Species persistence”, J. Math. Biology, 51:1 (2005), 75–113 | DOI | MR | Zbl

[5] Belyakov A.O., Davydov A.A., Veliov V.M., “Optimal cyclic exploitation of renewable resources”, J. Dyn. Control Syst., 21:3 (2015), 475–494 | DOI | MR | Zbl

[6] Belyakov A.O., Davydov A.A., Veliov V.M., “Optimal cyclic harvesting of renewable resource”, Dokl. Math., 96:2 (2017), 472–474 | DOI | MR | Zbl

[7] Cohen P.J., Foale, S.J., “Sustaining small-scale fisheries with periodically harvested marine reserves”, Marine Policy, 37 (2013), 278–287 | DOI

[8] Daners D., Medina P., Abstract evolution equations. Periodic problems and applications, Pitman Research Notes in Mathematics Series, 279, Longman Scientific Technical, London, 1992, 249 pp. | MR | Zbl

[9] Davydov A.A., “Suschestvovanie optimalnykh statsionarnykh sostoyanii ekspluatiruemykh populyatsii s diffuziei”, Tr. MIAN, 310 (2020), 135–142 | DOI | Zbl

[10] Davydov A.A., “Optimal steady state of distributed population in periodic environment”, AIP Conf. Proc., 2333 (2021), 120007 | DOI

[11] Du Y., Peng R., “The periodic logistic equation with spatial and temporal degeneracies”, Trans. Amer. Math. Soc., 364 (2012), 6039–6070 | DOI | MR | Zbl

[12] Fisher R. A., “The wave of advance of advantageous genes”, Annals of Eugenics, 7:4 (1937), 353–369 | DOI

[13] Henderson K., Loreau M., “An ecological theory of changing human population dynamics”, People Nature, 1:1 (2019), 31–43 | DOI

[14] Hess P., Periodic-parabolic boundary value problems and positivity, Pitman Research Notes in Math. Ser., 247, John Wiley Sons, N Y, 1991, 139 pp. | MR | Zbl

[15] Kolmogorov A.N., Petrovskii I.G., Piskunov N.S., “A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem”, Bull. Moscow Univ. Math. Mech., 1:6 (1937), 1–26 ; Reprinted in, Selected Works of A.N. Kolmogorov, v. 1, ed. V.M. Tikhomirov, Kluwer, Dordrecht, 1991, 242–270 | MR | MR

[16] Ladyzhenskaya O.A., Uraltseva N.N., Solonnikov V.A., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, Moskva, 1967, 736 pp. | MR

[17] Medina P.K., “Feedback stabilizability of time-periodic parabolic equations”, Dynamics Reported(Expositions in Dynamical Systems), v. 5, eds. C.K.R.T. Jones, U. Kirchgraber, H.O. Walther, Springer, Berlin; Heidelberg, 1996 | DOI | MR | Zbl

[18] Nadin G., “Existence and uniqueness of the solution of a space-time periodic reaction-diffusion equation”, J. Diff. Eq., 249:6 (2010), 1288–1304 | DOI | MR | Zbl

[19] Undersander D., Albert B., Cosgrove D., Johnson D., Peterson P., Pastures for profit: A guide to rotational grazing (A3529), Cooperative Extension Publishing, University of Wisconsin-Extension, Madison, 2002, 43 pp.