Optimal states of distributed exploited populations with periodic impulse selection
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 99-107
Voir la notice de l'article provenant de la source Math-Net.Ru
The dynamics of a population distributed on a torus is described by an equation of the Kolmogorov–Petrovsky–Piskunov–Fisher type in the divergence form. The population is exploited by periodic sampling of a constant distributed measurable ratio of its density. We prove that there exists a sampling ratio maximizing the time-averaged income in kind, i.e., a ratio that provides an optimal stationary exploitation in the long run.
Keywords:
distributed population, Kolmogorov–Petrovsky–Piskunov–Fisher equation, impulse control
Mots-clés : optimal solution.
Mots-clés : optimal solution.
@article{TIMM_2021_27_2_a7,
author = {A. A. Davydov and D. A. Melnik},
title = {Optimal states of distributed exploited populations with periodic impulse selection},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {99--107},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a7/}
}
TY - JOUR AU - A. A. Davydov AU - D. A. Melnik TI - Optimal states of distributed exploited populations with periodic impulse selection JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 99 EP - 107 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a7/ LA - ru ID - TIMM_2021_27_2_a7 ER -
%0 Journal Article %A A. A. Davydov %A D. A. Melnik %T Optimal states of distributed exploited populations with periodic impulse selection %J Trudy Instituta matematiki i mehaniki %D 2021 %P 99-107 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a7/ %G ru %F TIMM_2021_27_2_a7
A. A. Davydov; D. A. Melnik. Optimal states of distributed exploited populations with periodic impulse selection. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 99-107. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a7/