Optimal states of distributed exploited populations with periodic impulse selection
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 99-107

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamics of a population distributed on a torus is described by an equation of the Kolmogorov–Petrovsky–Piskunov–Fisher type in the divergence form. The population is exploited by periodic sampling of a constant distributed measurable ratio of its density. We prove that there exists a sampling ratio maximizing the time-averaged income in kind, i.e., a ratio that provides an optimal stationary exploitation in the long run.
Keywords: distributed population, Kolmogorov–Petrovsky–Piskunov–Fisher equation, impulse control
Mots-clés : optimal solution.
@article{TIMM_2021_27_2_a7,
     author = {A. A. Davydov and D. A. Melnik},
     title = {Optimal states of distributed exploited populations with periodic impulse selection},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {99--107},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a7/}
}
TY  - JOUR
AU  - A. A. Davydov
AU  - D. A. Melnik
TI  - Optimal states of distributed exploited populations with periodic impulse selection
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 99
EP  - 107
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a7/
LA  - ru
ID  - TIMM_2021_27_2_a7
ER  - 
%0 Journal Article
%A A. A. Davydov
%A D. A. Melnik
%T Optimal states of distributed exploited populations with periodic impulse selection
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 99-107
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a7/
%G ru
%F TIMM_2021_27_2_a7
A. A. Davydov; D. A. Melnik. Optimal states of distributed exploited populations with periodic impulse selection. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 99-107. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a7/