@article{TIMM_2021_27_2_a6,
author = {N. L. Grigorenko and E. N. Khailov and E. V. Grigorieva and A. D. Klimenkova},
title = {Lotka{\textendash}Volterra {Competition} {Model} with a {Nonmonotone} {Therapy} {Function} for {Finding} {Optimal} {Strategies} in the {Treatment} of {Blood} {Cancers}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {79--98},
year = {2021},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a6/}
}
TY - JOUR AU - N. L. Grigorenko AU - E. N. Khailov AU - E. V. Grigorieva AU - A. D. Klimenkova TI - Lotka–Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 79 EP - 98 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a6/ LA - ru ID - TIMM_2021_27_2_a6 ER -
%0 Journal Article %A N. L. Grigorenko %A E. N. Khailov %A E. V. Grigorieva %A A. D. Klimenkova %T Lotka–Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers %J Trudy Instituta matematiki i mehaniki %D 2021 %P 79-98 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a6/ %G ru %F TIMM_2021_27_2_a6
N. L. Grigorenko; E. N. Khailov; E. V. Grigorieva; A. D. Klimenkova. Lotka–Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 79-98. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a6/
[1] Drozdova M.V., Drozdov A.A., Zabolevaniya krovi. Polnyi spravochnik, Eksmo, M., 2008, 15 pp.
[2] Kozinets G.I., Stuklov N.I., Tyurina N.G., Uchebnik po gematologii, Prakticheskaya meditsina, M., 2018, 336 pp.
[3] Grigorenko N.L., Khailov E.N., Grigoreva E.V., Klimenkova A.D., “Optimalnye strategii lecheniya rakovykh zabolevanii v matematicheskoi modeli konkurentsii Lotki - Volterry”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:1 (2020), 71–88 | DOI | MR
[4] Khailov E.N., Klimenkova A.D., Korobeinikov A., “Optimal control for anticancer therapy”, Extended abstracts spring 2018, Trends in Math., 11, eds. A. Korobeinikov, M. Caubergh, T. Lazaro, J. Sardanyes, Birkhauser, Basel, 2019, 35–43 | DOI | MR | Zbl
[5] Grigorenko N.L., Khailov E.N., Klimenkova A.D., Korobeinikov A., “Program and positional control strategies for the Lotka-Volterra competition model”, Stability, control and differential games, Proc. Intern. Conf. “Stability, Control, Diff. Games” (SCDG2019), eds. A. Tarasyev, V. Maksimov, T. Filippova, Springer Nature, Cham, Switzerland AG, 2020, 39–49 | DOI | Zbl
[6] Sole R.V., Deisboeck T.S., “An error catastrophe in cancer?”, J. Theor. Biol., 228 (2004), 47–54 | DOI | Zbl
[7] Sole R.V., Gonzalez-Garcia I., Costa J., “Spatial dynamics in cancer”, Complex Systems Science in Biomedicine, Topics in Biomedical Engineering International Book Series, eds. T.S. Deisboeck, J.Y. Kresh, Springer, N Y, 2006, 557–572 | DOI
[8] Kuchumov A.G., “Matematicheskoe modelirovanie i biomekhanicheskii podkhod k opisaniyu razvitiya, diagnostike i lecheniya onkologicheskikh zabolevanii”, Rossiiskii zhurnal biomekhaniki, 14:4 (2010), 42–69
[9] Bratus A.S., Novozhilov A.S., Platonov A.P., Dinamicheskie sistemy i modeli biologii, Fizmatlit, M., 2010, 400 pp.
[10] Tarasevich Yu.Yu., Matematicheskoe i kompyuternoe modelirovanie. Vvodnyi kurs, Librokom, M., 2013, 152 pp.
[11] Todorov Y., Fimmel E., Bratus A.S., Semenov Y.S., Nuernberg F., “An optimal strategies for leukemia therapy: a multi-objective approach”, Russ. J. Numer. Anal. Math. Model., 26:6 (2011), 589–604 | DOI | MR | Zbl
[12] Bratus A.S., Fimmel E., Todorov Y., Semenov Y.S., Nurnberg F., “On strategies on a mathematical model for leukemia therapy”, Nonlinear Analysis: Real World Appl., 13 (2012), 1044–1059 | DOI | MR | Zbl
[13] Fimmel E., Semenov Y.S., Bratus A.S., “On optimal and suboptimal treatment strategies for a mathematical model of leukemia”, Math. Biosci. Eng., 10:1 (2013), 151–165 | DOI | MR | Zbl
[14] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.
[15] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.
[16] Schattler H., Ledzewicz U., Geometric optimal control: theory, methods and examples, Springer, N Y; Heidelberg; Dordrecht; London, 2012, 640 pp. | DOI | MR | Zbl
[17] Schattler H., Ledzewicz U., Optimal control for mathematical models of cancer therapies: an applications of geometric methods, Springer, N Y; Heidelberg; Dordrecht; London, 2015, 496 pp. | DOI | MR
[18] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhauser, Boston, 1994, 244 pp. | DOI | MR | Zbl
[19] Levin A.Yu., “Neostsillyatsiya reshenii uravneniya $x^{(n)}+p_{1}(t)x^{(n-1)}+\dots+p_{n}(t)x=0$”, Uspekhi mat. nauk, 24:2 (1969), 43–96 | MR
[20] Bonnans F., Martinon P., Giorgi D., Grelard V., Maindrault S., Tissot O., Liu J., BOCOP 2.0.5 - user guide, February 8, 2017 URL: http://bocop.org