Lotka–Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 79-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The interaction of healthy and cancerous cell concentrations in diseases associated with blood cancer is described by a two-dimensional Lotka–Volterra competition model. A differential equation specifying the change in the concentration of a chemotherapeutic drug during treatment is added to the model. This equation includes a bounded control function determining the rate at which such a drug enters the patient's bloodstream. The effectiveness of the used treatment is described by a nonmonotone therapy function. The problem is to minimize the weighted difference between the concentrations of cancerous and healthy cells at the end of a given treatment period for the considered three-dimensional control system. Application of the Pontryagin maximum principle allows to analytically study the properties of the optimal control. We single out and investigate possible cases when such a control is a bang-bang function and also the cases when, along with the bang-bang sections, it can contain singular regimes of the first and second orders. The established analytical results are confirmed by numerical calculations performed for different values of parameters and initial conditions of the considered minimization problem.
Keywords: Lotka–Volterra competition model, nonmonotone therapy function, nonlinear control system, Pontryagin maximum principle, switching function, bang-bang control, singular regime, chattering.
@article{TIMM_2021_27_2_a6,
     author = {N. L. Grigorenko and E. N. Khailov and E. V. Grigorieva and A. D. Klimenkova},
     title = {Lotka{\textendash}Volterra {Competition} {Model} with a {Nonmonotone} {Therapy} {Function} for {Finding} {Optimal} {Strategies} in the {Treatment} of {Blood} {Cancers}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {79--98},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a6/}
}
TY  - JOUR
AU  - N. L. Grigorenko
AU  - E. N. Khailov
AU  - E. V. Grigorieva
AU  - A. D. Klimenkova
TI  - Lotka–Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 79
EP  - 98
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a6/
LA  - ru
ID  - TIMM_2021_27_2_a6
ER  - 
%0 Journal Article
%A N. L. Grigorenko
%A E. N. Khailov
%A E. V. Grigorieva
%A A. D. Klimenkova
%T Lotka–Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 79-98
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a6/
%G ru
%F TIMM_2021_27_2_a6
N. L. Grigorenko; E. N. Khailov; E. V. Grigorieva; A. D. Klimenkova. Lotka–Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 79-98. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a6/

[1] Drozdova M.V., Drozdov A.A., Zabolevaniya krovi. Polnyi spravochnik, Eksmo, M., 2008, 15 pp.

[2] Kozinets G.I., Stuklov N.I., Tyurina N.G., Uchebnik po gematologii, Prakticheskaya meditsina, M., 2018, 336 pp.

[3] Grigorenko N.L., Khailov E.N., Grigoreva E.V., Klimenkova A.D., “Optimalnye strategii lecheniya rakovykh zabolevanii v matematicheskoi modeli konkurentsii Lotki - Volterry”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:1 (2020), 71–88 | DOI | MR

[4] Khailov E.N., Klimenkova A.D., Korobeinikov A., “Optimal control for anticancer therapy”, Extended abstracts spring 2018, Trends in Math., 11, eds. A. Korobeinikov, M. Caubergh, T. Lazaro, J. Sardanyes, Birkhauser, Basel, 2019, 35–43 | DOI | MR | Zbl

[5] Grigorenko N.L., Khailov E.N., Klimenkova A.D., Korobeinikov A., “Program and positional control strategies for the Lotka-Volterra competition model”, Stability, control and differential games, Proc. Intern. Conf. “Stability, Control, Diff. Games” (SCDG2019), eds. A. Tarasyev, V. Maksimov, T. Filippova, Springer Nature, Cham, Switzerland AG, 2020, 39–49 | DOI | Zbl

[6] Sole R.V., Deisboeck T.S., “An error catastrophe in cancer?”, J. Theor. Biol., 228 (2004), 47–54 | DOI | Zbl

[7] Sole R.V., Gonzalez-Garcia I., Costa J., “Spatial dynamics in cancer”, Complex Systems Science in Biomedicine, Topics in Biomedical Engineering International Book Series, eds. T.S. Deisboeck, J.Y. Kresh, Springer, N Y, 2006, 557–572 | DOI

[8] Kuchumov A.G., “Matematicheskoe modelirovanie i biomekhanicheskii podkhod k opisaniyu razvitiya, diagnostike i lecheniya onkologicheskikh zabolevanii”, Rossiiskii zhurnal biomekhaniki, 14:4 (2010), 42–69

[9] Bratus A.S., Novozhilov A.S., Platonov A.P., Dinamicheskie sistemy i modeli biologii, Fizmatlit, M., 2010, 400 pp.

[10] Tarasevich Yu.Yu., Matematicheskoe i kompyuternoe modelirovanie. Vvodnyi kurs, Librokom, M., 2013, 152 pp.

[11] Todorov Y., Fimmel E., Bratus A.S., Semenov Y.S., Nuernberg F., “An optimal strategies for leukemia therapy: a multi-objective approach”, Russ. J. Numer. Anal. Math. Model., 26:6 (2011), 589–604 | DOI | MR | Zbl

[12] Bratus A.S., Fimmel E., Todorov Y., Semenov Y.S., Nurnberg F., “On strategies on a mathematical model for leukemia therapy”, Nonlinear Analysis: Real World Appl., 13 (2012), 1044–1059 | DOI | MR | Zbl

[13] Fimmel E., Semenov Y.S., Bratus A.S., “On optimal and suboptimal treatment strategies for a mathematical model of leukemia”, Math. Biosci. Eng., 10:1 (2013), 151–165 | DOI | MR | Zbl

[14] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[15] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[16] Schattler H., Ledzewicz U., Geometric optimal control: theory, methods and examples, Springer, N Y; Heidelberg; Dordrecht; London, 2012, 640 pp. | DOI | MR | Zbl

[17] Schattler H., Ledzewicz U., Optimal control for mathematical models of cancer therapies: an applications of geometric methods, Springer, N Y; Heidelberg; Dordrecht; London, 2015, 496 pp. | DOI | MR

[18] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhauser, Boston, 1994, 244 pp. | DOI | MR | Zbl

[19] Levin A.Yu., “Neostsillyatsiya reshenii uravneniya $x^{(n)}+p_{1}(t)x^{(n-1)}+\dots+p_{n}(t)x=0$”, Uspekhi mat. nauk, 24:2 (1969), 43–96 | MR

[20] Bonnans F., Martinon P., Giorgi D., Grelard V., Maindrault S., Tissot O., Liu J., BOCOP 2.0.5 - user guide, February 8, 2017 URL: http://bocop.org