Lotka--Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 79-98

Voir la notice de l'article provenant de la source Math-Net.Ru

The interaction of healthy and cancerous cell concentrations in diseases associated with blood cancer is described by a two-dimensional Lotka–Volterra competition model. A differential equation specifying the change in the concentration of a chemotherapeutic drug during treatment is added to the model. This equation includes a bounded control function determining the rate at which such a drug enters the patient's bloodstream. The effectiveness of the used treatment is described by a nonmonotone therapy function. The problem is to minimize the weighted difference between the concentrations of cancerous and healthy cells at the end of a given treatment period for the considered three-dimensional control system. Application of the Pontryagin maximum principle allows to analytically study the properties of the optimal control. We single out and investigate possible cases when such a control is a bang-bang function and also the cases when, along with the bang-bang sections, it can contain singular regimes of the first and second orders. The established analytical results are confirmed by numerical calculations performed for different values of parameters and initial conditions of the considered minimization problem.
Keywords: Lotka–Volterra competition model, nonmonotone therapy function, nonlinear control system, Pontryagin maximum principle, switching function, bang-bang control, singular regime, chattering.
@article{TIMM_2021_27_2_a6,
     author = {N. L. Grigorenko and E. N. Khailov and E. V. Grigorieva and A. D. Klimenkova},
     title = {Lotka--Volterra {Competition} {Model} with a {Nonmonotone} {Therapy} {Function} for {Finding} {Optimal} {Strategies} in the {Treatment} of {Blood} {Cancers}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {79--98},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a6/}
}
TY  - JOUR
AU  - N. L. Grigorenko
AU  - E. N. Khailov
AU  - E. V. Grigorieva
AU  - A. D. Klimenkova
TI  - Lotka--Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 79
EP  - 98
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a6/
LA  - ru
ID  - TIMM_2021_27_2_a6
ER  - 
%0 Journal Article
%A N. L. Grigorenko
%A E. N. Khailov
%A E. V. Grigorieva
%A A. D. Klimenkova
%T Lotka--Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 79-98
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a6/
%G ru
%F TIMM_2021_27_2_a6
N. L. Grigorenko; E. N. Khailov; E. V. Grigorieva; A. D. Klimenkova. Lotka--Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 79-98. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a6/