Necessary optimality conditions for switching systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 67-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an optimal control problem for a switching system whose state vector contains both continuous and discretely varying components. The continuous and the discrete parts of the system are described by differential and recursive equations, respectively. The discrete part switches the operating modes of the continuous part and is itself influenced by the latter. The switching times and their number are not predefined. They are found as a result of optimizing the quality functional of the control process; here processes with instantaneous multiple switchings are not excluded. In deriving the necessary optimality conditions, we use small variations of the controls of the discrete part and variations of the switching times, which are represented by needle variations of the control of the continuous part of the system. The obtained conditions differ from the traditional equations for auxiliary variables due to the presence of instantaneous multiple switchings. The application of the optimality conditions is demonstrated by an academic example.
Keywords: hybrid systems, switching systems, optimal control.
@article{TIMM_2021_27_2_a5,
     author = {A. S. Bortakovskii},
     title = {Necessary optimality conditions for switching systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {67--78},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a5/}
}
TY  - JOUR
AU  - A. S. Bortakovskii
TI  - Necessary optimality conditions for switching systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 67
EP  - 78
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a5/
LA  - ru
ID  - TIMM_2021_27_2_a5
ER  - 
%0 Journal Article
%A A. S. Bortakovskii
%T Necessary optimality conditions for switching systems
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 67-78
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a5/
%G ru
%F TIMM_2021_27_2_a5
A. S. Bortakovskii. Necessary optimality conditions for switching systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 67-78. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a5/

[1] Vasilev S.N., Malikov A.I., “O nekotorykh rezultatakh po ustoichivosti pereklyuchaemykh i gibridnykh sistem”, Aktualnye problemy mekhaniki sploshnoi sredy. K 20-letiyu IMM KazNTs RAN, v. 1, Foliant, Kazan, 2011, 23–81

[2] Bortakovskii A.S., Optimizatsiya pereklyuchayuschikh sistem, Izd-vo MAI, M., 2016, 120 pp.

[3] Branicky M.S., Borkar V.S., Mitter S.K., “A unified framework for hybrid control: Model and optimal control theory”, IEEE Trans. Automatic Control, 43:1 (1998), 31–45 | DOI | MR | Zbl

[4] Brockett R.W., “Hybrid models for motion control systems”, Essays on control: Perspectives in the theory and its applications, Progress in Systems and Control Theory, 14, eds. H.L. Trentelman, J.C. Willems, Birkhauser, Boston, 1993, 29–53 | DOI | MR

[5] Miller B.M., Rubinovich E.Ya., Optimizatsiya dinamicheskikh sistem s impulsnymi upravleniyami, Nauka, M., 2005, 429 pp.

[6] Bortakovskii A.S., Panteleev A.V., “Dostatochnye usloviya optimalnosti upravleniya nepreryvno-diskretnymi sistemami”, Avtomatika i telemekhanika, 1987, no. 7, 57–66 | MR

[7] Bortakovskii A.S., “Sintez optimalnykh sistem upravleniya so smenoi modelei dvizheniya”, Izv. RAN. Ser. Teoriya i sistemy upravleniya, 2018, no. 4, 57–74

[8] Sussmann H.J., “A maximum principle for hybrid optimal control problems”, Proc. of 38th IEEE Conf. on Decision and Control (Phoenix, AZ, USA), 1999, 425–430 | DOI

[9] Hedlund S., Rantzer A., “Optimal control of hybrid systems”, Proc. of 38th IEEE Conf. on Decision and Control (Phoenix, AZ), 1999, 3972–3977 | DOI

[10] Dmitruk A.V., Kaganovich A.M., “Printsip maksimuma dlya zadach optimalnogo upravleniya s promezhutochnymi ogranicheniyami”, Nelineinaya dinamika i upravlenie, 2008, no. 6, 101–136, Fizmatlit, M.

[11] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp.

[12] Krotov V.F., Gurman V.I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973, 446 pp.

[13] Fedorenko R.P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978, 488 pp.

[14] Letov A.M., Dinamika poleta i upravlenie, Nauka, M., 1973, 390 pp. | MR

[15] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 392 pp. | MR

[16] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.