On the reconstruction of an unknown input of a system of differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 59-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the problem of dynamic reconstruction of an unknown input acting on a system of ordinary differential equations nonlinear in the state variables and linear in the control. We consider the case of the absence of instantaneous constraints; i.e., we assume that the unknown perturbation can be unbounded, being a function summable with the square of the Euclidean norm. Taking this fact into account, we construct an algorithm for solving this problem that is resistant to information interferences and computational errors. The algorithm is based on a combination of constructions from the theory of ill-posed problems with the extremal shift method known in positional differential games. The algorithm is focused on the case of “continuous” measurement of the states of the system.
Keywords: system of differential equations
Mots-clés : stable reconstruction.
@article{TIMM_2021_27_2_a4,
     author = {M. S. Blizorukova},
     title = {On the reconstruction of an unknown input of a system of differential equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {59--66},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a4/}
}
TY  - JOUR
AU  - M. S. Blizorukova
TI  - On the reconstruction of an unknown input of a system of differential equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 59
EP  - 66
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a4/
LA  - ru
ID  - TIMM_2021_27_2_a4
ER  - 
%0 Journal Article
%A M. S. Blizorukova
%T On the reconstruction of an unknown input of a system of differential equations
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 59-66
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a4/
%G ru
%F TIMM_2021_27_2_a4
M. S. Blizorukova. On the reconstruction of an unknown input of a system of differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 59-66. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a4/

[1] Osipov Yu.S., Vasilev F.P., Potapov M.M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999, 238 pp.

[2] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, Basel, 1995, 625 pp. | MR | Zbl

[3] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 291 pp.

[4] Maksimov V.I., Pandolfi L., “O rekonstruktsii neogranichennykh upravlenii v nelineinykh dinamicheskikh sistemakh”, Prikl. matematika i mekhanika, 65:4 (2001), 385–390

[5] Blizorukova M.S., Maksimov V.I., “Ob odnom algoritme dinamicheskogo vosstanovleniya vkhodnogo vozdeistviya”, Differents. uravneniya, 49:1 (2013), 88–100 | MR | Zbl

[6] Blizorukova M.S., “O dinamicheskoi rekonstruktsii vkhoda upravlyaemoi sistemy”, Differents. uravneniya, 50:7 (2014), 859–864 | Zbl

[7] Maksimov V.I., “Rekonstruktsiya vkhodnogo vozdeistviya dinamicheskoi sistemy pri izmerenii chasti koordinat fazovogo vektora”, Zhurn. vych. matematiki i mat. fiziki, 59:5 (2019), 752–761 | Zbl

[8] Maksimov V.I., “The methods of dynamical reconstruction of an input in a system of ordinary differential equations”, J. Inverse and Ill-posed Prob., 29:1 (2021), 125–156 | DOI | MR | Zbl

[9] Blizorukova M., Maksimov V., “On one algorithm for reconstruction of a disturbance in a linear system of ordinary differential equations”, Archive of Control Sciences, 30:4 (2020), 757–773 | MR | Zbl

[10] Maksimov V.I., “Ob odnom algoritme rekonstruktsii vkhodnykh vozdeistvii v lineinykh sistemakh”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 5, 11–20 | Zbl

[11] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[12] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1978, 285 pp.

[13] Styuart D.E., Dinamika sistem s neravenstvami, Izhevskii In-t kompyuternykh issledovanii, M.; Izhevsk, 2013, 530 pp.

[14] Keller J.Y., Chabir K., Sauter D., “Input reconstruction for networked control systems subject to deception attacks and data losses on control signals”, Int. J. Syst. Sci., 47:4 (2016), 814–820 | DOI | MR | Zbl

[15] Chabir K., Sid M.A., Sauter D., “Fault diagnosis in a networked control system under communication constraints: A quadrotor applications”, Int. J. Apll. Math. Comput. Sci., 24:4 (2014), 809–820 | DOI | MR | Zbl