On the Relaxation of a Game Problem of Approach with Priority Elements
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 281-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The issues related to the relaxation of a game problem of approach on a finite time interval are considered. In the original problem, it is assumed that the following sets are given: a target set closed in the position space and a set that determines state constraints and whose sections corresponding to fixed times are closed in the state space. The game termination conditions are relaxed by replacing these sets with their neighborhoods defined in different topologies of the position space; the “sizes” of the neighborhoods are related by a proportionality coefficient in the form of a priority parameter. For each value of this parameter and a fixed position, we find the value of the relaxed problem, which coincides with the minimax in the class of quasistrategies for a special quality functional. It is established that the resulting position function depends on the parameter continuously as a mapping of the positive semiaxis to the Tikhonov power of the real line with the position space as the index set. Regions of uniform continuity are specified for the corresponding calculation functions (for a fixed position).
Keywords: differential game, quasistrategy, program iteration method.
@article{TIMM_2021_27_2_a22,
     author = {A. G. Chentsov},
     title = {On the {Relaxation} of a {Game} {Problem} of {Approach} with {Priority} {Elements}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {281--297},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a22/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - On the Relaxation of a Game Problem of Approach with Priority Elements
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 281
EP  - 297
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a22/
LA  - ru
ID  - TIMM_2021_27_2_a22
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T On the Relaxation of a Game Problem of Approach with Priority Elements
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 281-297
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a22/
%G ru
%F TIMM_2021_27_2_a22
A. G. Chentsov. On the Relaxation of a Game Problem of Approach with Priority Elements. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 281-297. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a22/

[1] Krasovskii N. N., Subbotin A. I., “Alternativa dlya igrovoi zadachi sblizheniya”, Prikl. matematika i mekhanika, 34:6 (1970), 1005–1022

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[3] Pontryagin L. S., “O lineinykh differentsialnykh igrakh, 1”, Dokl. AN SSSR, 174:6 (1967), 1278–1280 ; “О линейных дифференциальных играх, 2”, 175:4, 764–766 | Zbl | Zbl

[4] Pontryagin L. S., “Matematicheskaya teoriya optimalnykh protsessov i differentsialnykh igr”, Tr. MIAN im. V. A. Steklova, 169 (1985), 119–157

[5] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp.

[6] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Fizmatlit, M., 1970, 420 pp.

[7] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 516 pp.

[8] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.

[9] Osipov Yu. S., “Alternativa v differentsialno-raznostnoi igre”, Dokl. AN SSSR, 1971

[10] Osipov Yu. S., “K teorii differentsialnykh igr v sistemakh s raspredelennymi parametrami”, Dokl. AN SSSR, 223:6 (1975), 1314–1317 | MR | Zbl

[11] Pshenichnyi B. N., “Struktura differentsialnykh igr”, Dokl. AN SSSR, 184:2 (1969), 285–287

[12] Subbotin A. I., “Obobschenie osnovnogo uravneniya teorii differentsialnykh igr”, Dokl. AN SSSR, 254:2 (1980), 293–297 | MR | Zbl

[13] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Izd-vo In-ta kompyuternykh isledovanii, M.; Izhevsk, 2003, 336 pp. | MR

[14] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR

[15] Kryazhimskii A. V., “K teorii pozitsionnykh differentsialnykh igr sblizheniya-ukloneniya”, Dokl. AN SSSR, 239:4 (1978), 779–782 | MR

[16] Aizeks R., Differentsialnye igry, Mir, M., 1967, 480 pp.

[17] Krasovskii N. N., “Differentsialnaya igra sblizheniya-ukloneniya. I”, Izv. AN SSSR. Ser. tekhnicheskaya kibernetika, 1973, no. 2, 3-18

[18] Chentsov A. G., “O strukture odnoi igrovoi zadachi sblizheniya”, Dokl. AN SSSR, 224:6 (1975), 1272–1275 | MR | Zbl

[19] Chentsov A. G., “K igrovoi zadache navedeniya”, Dokl. AN SSSR, 226:1 (1976), 73–76 | MR | Zbl

[20] Ukhobotov V. I., “Postroenie stabilnogo mosta dlya odnogo klassa lineinykh igr”, Prikladnaya matematika i mekhanika, 41:2 (1977), 358–364 | MR

[21] Chistyakov S. V., “K resheniyu igrovykh zadach presledovaniya”, Prikladnaya matematika i mekhanika, 41:5 (1977), 825–832 | MR

[22] Chentsov A. G., “Ob igrovoi zadache sblizheniya k zadannomu momentu vremeni”, Izv. AN SSSR. Ser. matematicheskaya, 42:2 (1978), 455–467 | MR | Zbl

[23] Chentsov A. G., “Metod programmnykh iteratsii v igrovoi zadache navedeniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:2 (2016), 304–321

[24] Chentsov A. G., “Nekotorye voprosy teorii differentsialnykh igr s fazovymi ogranicheniyami”, Izv. IMI UdGU, 56 (2020), 138–184 | Zbl

[25] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp.

[26] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964, 430 pp.

[27] Chentsov A. G., Elementy konechno-additivnoi teorii mery. I, Izd-vo UGTU-UPI, Ekaterinburg, 2008, 388 pp.

[28] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp.

[29] Danford N., Shvarts Dzh. T., Lineinye operatory: Obschaya teoriya, IL, M., 1962, 896 pp.

[30] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp.

[31] Chentsov A. G., “Iteratsii stabilnosti i zadacha ukloneniya s ogranicheniem na chislo pereklyuchenii formiruemogo upravleniya”, Izv. IMI UdGU, 49 (2017), 17–54 | Zbl

[32] Chentsov A. G., “Iteratsii stabilnosti i zadacha ukloneniya s ogranicheniem na chislo pereklyuchenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:2 (2017), 285–302 | MR

[33] Chentsov A. G., “Metod programmnykh iteratsii v igrovoi zadache navedeniya”, Vest. Udmurt. un-ta. Ser. Matematika. Mekhanika. Kompyuternye nauki, 26:2 (2016), 271–282 | MR | Zbl

[34] Chentsov A. G., “Relaksatsii igrovoi zadachi sblizheniya, svyazannye s alternativoi v differentsialnoi igre sblizheniya-ukloneniya”, Vest. rossiiskikh universitetov. Matematika, 25:130 (2020), 196–244