On a Problem of Impulse Control under Disturbance and Possible Breakdown
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 249-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a linear problem with impulse control under an uncontrolled disturbance. The only information available about the disturbance is a connected compact set of its possible values. It is believed that one breakdown may occur and lead to a change in the dynamics of the control process. The time of the breakdown is not known in advance. Only the length of a time interval required to eliminate the breakdown is known. The goal of the control process is to ensure that the value of a linear function of the phase coordinates at a fixed point in time belongs to a given closed interval. The control is constructed based on the principle of minimization of the guaranteed result. The opponents are the disturbance and the time of the breakdown. Sufficient conditions are found under which the problem has a solution. A guaranteeing control is constructed.
Keywords: control, impulse control, disturbance, breakdown.
@article{TIMM_2021_27_2_a20,
     author = {V. N. Ushakov and V. I. Ukhobotov and I. V. Izmestyev},
     title = {On a {Problem} of {Impulse} {Control} under {Disturbance} and {Possible} {Breakdown}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {249--263},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a20/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - V. I. Ukhobotov
AU  - I. V. Izmestyev
TI  - On a Problem of Impulse Control under Disturbance and Possible Breakdown
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 249
EP  - 263
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a20/
LA  - ru
ID  - TIMM_2021_27_2_a20
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A V. I. Ukhobotov
%A I. V. Izmestyev
%T On a Problem of Impulse Control under Disturbance and Possible Breakdown
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 249-263
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a20/
%G ru
%F TIMM_2021_27_2_a20
V. N. Ushakov; V. I. Ukhobotov; I. V. Izmestyev. On a Problem of Impulse Control under Disturbance and Possible Breakdown. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 249-263. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a20/

[1] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp.

[2] Pontryagin L. S., “O lineinykh differentsialnykh igrakh. I”, Dokl. AN SSSR, 174:6 (1967), 1278–1280 | Zbl

[3] Pontryagin L. S., “O lineinykh differentsialnykh igrakh. II”, Dokl. AN SSSR, 175:4 (1967), 764–766 | MR | Zbl

[4] Nikolskii M. S., “O zadache upravleniya lineinoi sistemoi s narusheniyami”, Dokl. AN SSSR, 287:6 (1986), 1317–1320 | MR

[5] Nikolskii M. S., “Zadacha o pereprave s vozmozhnoi ostanovkoi dvigatelya”, Differents. uravneniya, 29 (1993), 1937–1940

[6] Nikolskii M. S., “Upravlenie lineinymi ob'ektami s vozmozhnymi narusheniyami v dinamike”, Tr. In-ta matematiki i mekhaniki UrO RAN, 3 (1995), 132–146

[7] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[8] Ukhobotov V. I., “Ob odnoi zadache upravleniya pri nalichii pomekhi i vozmozhnoi polomke”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:3 (2019), 265–278 | DOI | Zbl

[9] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp.

[10] Krasovskii N. N., “Ob odnoi zadache presledovaniya”, Prikl. matematika i mekhanika, 27:2 (1963), 244–254 | Zbl

[11] Krasovskii N. N., Tretyakov V. E., “K zadache o presledovanii v sluchae ogranichenii na impulsy upravlyayuschikh sil”, Differents. uravneniya, 2:5 (1966), 587–599

[12] Pozharitskii G. K., “Igrovaya zadacha impulsnogo sblizheniya s protivnikom, ogranichennym po energii”, Prikl. matematika i mekhanika, 39:4 (1975), 579–589 | MR

[13] Subbotina N. N., Subbotin A. I., “Alternativa dlya differentsialnoi igry sblizheniya-ukloneniya pri ogranicheniyakh na impulsy upravlenii igrokov”, Prikl. matematika i mekhanika, 39:3 (1975), 397–406 | MR | Zbl

[14] Serov V. P., Chentsov A. G., “O programmnoi lineinoi igrovoi zadache navedeniya pri ogranichenii na impuls upravlyaemoi sily”, Avtomatika i telemekhanika, 1993, no. 5, 61–74 | Zbl

[15] Kumkov S. I., Patsko V. S., “Informatsionnoe mnozhestvo v zadache impulsnogo upravleniya”, Avtomatika i telemekhanika, 1997, no. 7, 195–206 | Zbl

[16] Belousov A. A., “Differentsialnye igry s integralnymi ogranicheniyami i impulsnymi upravleniyami”, Dokl. NAN Ukrainy, 2013, no. 11, 37–42 | Zbl

[17] Tukhtasinov M., “Lineinaya differentsialnaya igra presledovaniya s impulsnym upravleniem i lineinym integralnym ogranicheniem na upravleniya igrokov”, Itogi nauki i tekhniki. Ser. Sovrem. matematika i ee prilozheniya. Tematicheskii obzor, 143 (2017), 24–39 | MR

[18] Petrov N. N., “Zadacha gruppovogo presledovaniya v klasse impulsnykh strategii presledovatelei”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 2, 38–44 | Zbl

[19] Kotlyachkova E .V., “K nestatsionarnoi zadache prostogo presledovaniya v klasse impulsnykh strategii”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 1:45 (2015), 106–113 | Zbl

[20] Ukhobotov V. I., Izmestev I. V., “Sintez upravlenii v odnotipnoi igrovoi zadache impulsnoi vstrechi v zadannyi moment vremeni s terminalnym mnozhestvom v forme koltsa”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 27:1 (2017), 69–85 | DOI | MR | Zbl

[21] Filippova T. F., “Otsenka mnozhestv dostizhimosti sistem s impulsnym upravleniem, neopredelennostyu i nelineinostyu”, Izv. Irkut. gos. un-ta. Ser. Matematika, 10 (2017), 205–216 | DOI

[22] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp.

[23] Kudryavtsev L. D., Kurs matematicheskogo analiza, v. 1, Vysshaya shk., M., 1981, 687 pp. | MR

[24] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 319 pp. | MR

[25] Ukhobotov V. I., Metod odnomernogo proektirovaniya v lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami, ucheb. posobie, Izd-vo Chelyab. gos. un-ta, Chelyabinsk, 2005, 124 pp.