Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 35-48
Voir la notice de l'article provenant de la source Math-Net.Ru
Under conditions characterizing the dominance of the discounting factor, a complete version of the Pontryagin maximum principle for an optimal control problem with infinite time horizon and a special asymptotic endpoint constraint is developed. Problems of this type arise in mathematical economics in the studies of growth models.
Keywords:
optimal control, infinite horizon, Pontryagin maximum principle, asymptotic endpoint constraint, growth models, sustainable development.
@article{TIMM_2021_27_2_a2,
author = {S. M. Aseev},
title = {Maximum {Principle} for an {Optimal} {Control} {Problem} with an {Asymptotic} {Endpoint} {Constraint}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {35--48},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a2/}
}
TY - JOUR AU - S. M. Aseev TI - Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 35 EP - 48 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a2/ LA - ru ID - TIMM_2021_27_2_a2 ER -
S. M. Aseev. Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 35-48. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a2/