Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 35-48

Voir la notice de l'article provenant de la source Math-Net.Ru

Under conditions characterizing the dominance of the discounting factor, a complete version of the Pontryagin maximum principle for an optimal control problem with infinite time horizon and a special asymptotic endpoint constraint is developed. Problems of this type arise in mathematical economics in the studies of growth models.
Keywords: optimal control, infinite horizon, Pontryagin maximum principle, asymptotic endpoint constraint, growth models, sustainable development.
@article{TIMM_2021_27_2_a2,
     author = {S. M. Aseev},
     title = {Maximum {Principle} for an {Optimal} {Control} {Problem} with an {Asymptotic} {Endpoint} {Constraint}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {35--48},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a2/}
}
TY  - JOUR
AU  - S. M. Aseev
TI  - Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 35
EP  - 48
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a2/
LA  - ru
ID  - TIMM_2021_27_2_a2
ER  - 
%0 Journal Article
%A S. M. Aseev
%T Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 35-48
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a2/
%G ru
%F TIMM_2021_27_2_a2
S. M. Aseev. Maximum Principle for an Optimal Control Problem with an Asymptotic Endpoint Constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 35-48. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a2/