Real-Time Calculation of a Caputo Fractional Derivative from Noisy Data. The Case of Continuous Measurements
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 238-248 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of finding the derivative of a function, which is a classical problem of mathematical analysis. The values of the function are measured continuously over a finite time interval with some error. We propose an algorithm for the approximate calculation of a Caputo fractional derivative from the measurement values based on the methods of feedback control theory. First, the problem of calculating the fractional derivative is replaced by an inverse problem for a control system. Then the method of dynamic inversion is applied to the inverse problem, which allows us to construct a real-time solution algorithm stable under information noises and computational errors. The algorithm is based on N. N. Krasovskii's extremal aiming method, which is widely known in the theory of guaranteed control, and on a local modification of A. N. Tikhonov's classical regularization method with a smoothing functional. The order of convergence of the proposed algorithm is obtained, and a numerical example illustrating the application of the developed technique for calculating Caputo fractional derivatives of specific functions in real time is considered.
Keywords: Caputo fractional derivative, incomplete information, error estimate.
Mots-clés : reconstruction
@article{TIMM_2021_27_2_a19,
     author = {P. G. Surkov},
     title = {Real-Time {Calculation} of a {Caputo} {Fractional} {Derivative} from {Noisy} {Data.} {The} {Case} of {Continuous} {Measurements}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {238--248},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a19/}
}
TY  - JOUR
AU  - P. G. Surkov
TI  - Real-Time Calculation of a Caputo Fractional Derivative from Noisy Data. The Case of Continuous Measurements
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 238
EP  - 248
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a19/
LA  - ru
ID  - TIMM_2021_27_2_a19
ER  - 
%0 Journal Article
%A P. G. Surkov
%T Real-Time Calculation of a Caputo Fractional Derivative from Noisy Data. The Case of Continuous Measurements
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 238-248
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a19/
%G ru
%F TIMM_2021_27_2_a19
P. G. Surkov. Real-Time Calculation of a Caputo Fractional Derivative from Noisy Data. The Case of Continuous Measurements. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 238-248. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a19/

[1] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier Science, N Y, 2006, 540 pp. | MR | Zbl

[2] Stechkin S.B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl

[3] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6 (312) (1996), 89–124 | MR | Zbl

[4] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp.

[5] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp.

[6] Vasin V.V., “Ob ustoichivom vychislenii proizvodnoi v prostranstve $C(-\infty ,\infty )$”, Zhurn. vychisl. matematiki i mat. fiziki, 13:6 (1973), 1383–1389

[7] Skorik G.G., “O nailuchshei otsenke pogreshnosti metoda usrednyayuschikh yader v zadache differentsirovaniya zashumlennoi funktsii”, Izv. vuzov. Matematika, 2004, no. 3, 76–80 | MR | Zbl

[8] Hanke M., Scherzer O., “Inverse problems light: numerical differentiation”, The American Mathematical Monthly, 108:6 (2001), 512–521 | DOI | MR | Zbl

[9] Wang Y.B., Jia X.Z., Cheng J., “A numerical differentiation method and its application to reconstruction of discontinuity”, Inverse Problems, 18:6 (2002), 1461–1476 | DOI | MR | Zbl

[10] Chartrand R., “Numerical differentiation of noisy, nonsmooth data”, ISRN Applied Mathematics, 2011 (2011), 164564 | DOI | MR | Zbl

[11] Oldham K., Spanier J., The fractional calculus theory and applications of differentiation and integration to arbitrary order, Academic Press, Inc., N Y, 1974, 251 pp. | MR | Zbl

[12] Murio D.A., “On the stable numerical evaluation of Caputo fractional derivatives”, Comp. Math. Appl., 51:9 (2006), 1539–1550 | DOI | MR | Zbl

[13] Pandolfi L., “A Lavrent'ev-type approach to the on-line computation of Caputo fractional derivatives”, Inverse problems, 24:1 (2008), 015014 | DOI | MR | Zbl

[14] Kryazhimskii A.V., Osipov Yu.S., “O nailuchshem priblizhenii operatora differentsirovaniya v klasse neuprezhdayuschikh operatorov”, Mat. zametki, 37:2 (1985), 192–199 | MR

[15] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, Basel, 1995, 625 pp. | MR | Zbl

[16] Maksimov V.I., Pandolfi L., “O rekonstruktsii neogranichennykh upravlenii v nelineinykh dinamicheskikh sistemakh”, Prikl. matematika i mekhanika, 65:3 (2001), 385–391 | MR | Zbl

[17] Melnikova L., Rozenberg V., “One dynamical input reconstruction problem: Tuning of solving algorithm via numerical experiments”, AIMS Mathematics, 4:3 (2019), 699–713 | DOI | MR

[18] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[19] Surkov P.G., “Zadacha dinamicheskogo vosstanovleniya pravoi chasti sistemy differentsialnykh uravnenii netselogo poryadka”, Differents. uravneniya, 55:6 (2019), 865–874 | DOI | Zbl

[20] Maksimov V.I., “O vychislenii proizvodnoi funktsii, zadannoi netochno, s pomoschyu zakonov obratnoi svyazi”, Tr. MIAN, 291 (2015), 231–243 | DOI | Zbl

[21] Gomoyunov M.I., “Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems”, Fractional Calculus and Applied Analysis, 21:5 (2018), 1238–1261 | DOI | MR

[22] Shao J., Meng F., “Gronwall-Bellman type inequalities and their applications to fractional differential equations”, Abstract and Applied Analysis, 2013 (2013), 7 | DOI | MR

[23] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, IMM UrO RAN, Ekaterinburg, 2011, 292 pp.