Voir la notice du chapitre de livre
Mots-clés : parabolic equation
@article{TIMM_2021_27_2_a18,
author = {M. I. Sumin},
title = {Regularization of the {Pontryagin} maximum principle in a convex optimal boundary control problem for a parabolic equation with an operator equality constraint},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {221--237},
year = {2021},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a18/}
}
TY - JOUR AU - M. I. Sumin TI - Regularization of the Pontryagin maximum principle in a convex optimal boundary control problem for a parabolic equation with an operator equality constraint JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 221 EP - 237 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a18/ LA - ru ID - TIMM_2021_27_2_a18 ER -
%0 Journal Article %A M. I. Sumin %T Regularization of the Pontryagin maximum principle in a convex optimal boundary control problem for a parabolic equation with an operator equality constraint %J Trudy Instituta matematiki i mehaniki %D 2021 %P 221-237 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a18/ %G ru %F TIMM_2021_27_2_a18
M. I. Sumin. Regularization of the Pontryagin maximum principle in a convex optimal boundary control problem for a parabolic equation with an operator equality constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 221-237. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a18/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR
[2] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979, 432 pp. | MR
[3] Vasilev F. P., Metody optimizatsii, v 2-kh kn., MTsNMO, M., 2011, 1056 pp.
[4] Sumin M. I., “Regulyarizovannye printsip Lagranzha i printsip maksimuma Pontryagina v optimalnom upravlenii i obratnykh zadachakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:1 (2019), 279–296 | DOI | MR
[5] Sumin M. I., “O regulyarizatsii klassicheskikh uslovii optimalnosti v vypuklykh zadachakh optimalnogo upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:2 (2020), 252–269 | DOI | MR
[6] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986, 288 pp.
[7] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.
[8] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 352 pp.
[9] Breitenbach T., Borzi A., “A sequential quadratic hamiltonian method for solving parabolic optimal control problems with discontinuous cost functionals”, J. Dyn. Control Syst., 25:3 (2019), 403–435 | DOI | MR | Zbl
[10] Breitenbach T., Borzi A., “On the SQH scheme to solve nonsmooth PDE optimal control problems”, Numerical Functional Analysis and Optimization, 40:13 (2019), 1489–1531 | DOI | MR | Zbl
[11] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR
[12] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, Dokl. AN SSSR, 165:1 (1965), 33–35 | Zbl
[13] Raymond J.-P., Zidani H., “Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations”, Appl. Math. Optim., 39:2 (1999), 143–177 | DOI | MR | Zbl
[14] Casas E., “Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations”, SIAM J. Control Optim., 35 (1997), 1297–1327 | DOI | MR | Zbl
[15] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zhurn. vychislit. matematiki i mat. fiziki, 44:11 (2004), 2001–2019 | MR | Zbl