@article{TIMM_2021_27_2_a17,
author = {N. N. Subbotina and E. A. Krupennikov},
title = {Weak* {Approximations} to the {Solution} of a {Dynamic} {Reconstruction} {Problem}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {208--220},
year = {2021},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a17/}
}
TY - JOUR AU - N. N. Subbotina AU - E. A. Krupennikov TI - Weak* Approximations to the Solution of a Dynamic Reconstruction Problem JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 208 EP - 220 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a17/ LA - ru ID - TIMM_2021_27_2_a17 ER -
N. N. Subbotina; E. A. Krupennikov. Weak* Approximations to the Solution of a Dynamic Reconstruction Problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 208-220. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a17/
[1] Subbotina N. N., Krupennikov E. A., “The method of characteristics in an identification problem”, Proc. Steklov Inst. Math., 299 (2017), 205–216 | DOI | MR
[2] Subbotina N. N., Tokmantsev T. B., Krupennikov E. A., “Dynamic programming to reconstruction problems for a macroeconomic model”, IFIP Adv. Inf. Comm. Te., 494 (2016), 472–481 | DOI
[3] Subbotina N. N., Krupennikov E. A., “Hamiltonian systems for dynamic control reconstruction problems”, Minimax Theory Appl., 5:2 (2020), 439–454 | MR | Zbl
[4] Ngoc D. V., Marcelo H., Ang Jr., “Model identification for industrial robots”, Acta Polytechnica Hungarica, 6:5 (2009), 51–68
[5] Sturz Y. R., Affolter L. M., Smith R. S., “Parameter identification of the KUKA LBR iiwa robot including constraints on physical feasibility”, IFAC PapersOnLine, 50:1 (2017), 6863–6868 | DOI
[6] Ren C., Wang N., Liu Q., Liu Ch., “Dynamic force identification problem based on a novel improved Tikhonov regularization”, Mathematical Problems in Engineering Volume, 2019 (2019), 6095184, 13 pp. | DOI | MR | Zbl
[7] Chung J., Saibaba A. K., Brown M., Westman E., “Efficient generalized Golub-Kahan based methods for dynamic inverse problems”, Inverse Problems, 34 (2018), 024005, 12 pp. | DOI | MR | Zbl
[8] Liu Y. C., Chen Y. W., Wang Y. T., Chang J. R., “A high-order Lie groups scheme for solving the recovery of external force in nonlinear system”, Inverse Problems in Science and Engineering, 26:12 (2018), 1749–1783 | DOI | MR | Zbl
[9] D'Autilia M. C., Sgura I., Bozzini B., “Parameter identification in ODE models with oscillatory dynamics: a Fourier regularization approach”, Inverse Problems, 33:12 (2017), 124009 | DOI | MR | Zbl
[10] Schuster N., Burger M., Hahn B., “Dynamic inverse problems: modelling-regularization-numerics. Preface”, Inverse Problems, 34 (2018), 040301, 4 pp. | DOI | MR | Zbl
[11] Sabatier P. C., “Past and future of inverse problems”, J. Math. Phys., 41:6 (2000), 4082 | DOI | MR | Zbl
[12] Vasin V. V., “Methods for solving nonlinear ill-posed problems based on the Tikhonov-Lavrentiev regularization and iterative approximation”, Eurasian J. Math. Comp. Appl., 4:4 (2016), 60–73 | DOI | MR
[13] Kabanikhin S. I., Krivorotko O. I., “Identification of biological models described by systems of nonlinear differential equations”, J. of Inverse and Ill-posed Problems, 23:5 (2015), 519–527 | DOI | MR | Zbl
[14] Schmitt U., Louis A. K., Wolters C., Vauhkonen M., “Efficient algorithms for the regularization of dynamic inverse problems: II. Applications”, Inverse Problems, 18:3 (2002), 659–676 | DOI | MR | Zbl
[15] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Ser. tekhn. kibernetika, 1983, no. 2, 51–60
[16] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[17] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., “Nekotorye algoritmy dinamicheskogo vosstanovleniya vkhodov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 129–161 | Zbl
[18] Tikhonov A. N., “Ob ustoichivosti obratnykh zadach”, Dokl. AN SSSR, 39:5 (1943), 195–198
[19] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp.
[20] Magnus Ya. R., Neidekker Kh., Matrichnoe differentsialnoe ischislenie s prilozheniyami k statistike i ekonometrike, FIZLIT, M., 2002, 486 pp.
[21] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, FIZMATLIT, M., 2004, 572 pp.
[22] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.
[23] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd-vo un-ta, Tbilisi, 1977, 256 pp.