Weak* Approximations to the Solution of a Dynamic Reconstruction Problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 208-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of the dynamic reconstruction of an observed state trajectory $x^*(\cdot)$ of an affine deterministic dynamic system and a control that has generated this trajectory. The reconstruction is based on current information about inaccurate discrete measurements of $x^*(\cdot)$. A correct statement of the problem on the construction of approximations $u^l(\cdot)$ to the normal control $u^*(\cdot)$ generating $x^*(\cdot)$ is refined. The solution of this problem obtained using the variational approach proposed by the authors is discussed. Conditions on the input data and matching conditions for the approximation parameters (parameters of the accuracy and frequency of measurements of the trajectory and an auxiliary regularizing parameter) are given. Under these conditions, the reconstructed trajectories $x^l(\cdot)$ of the dynamical system converge uniformly to the observed trajectory $x^*(\cdot)$ in the space $C$ of continuous functions as $l\to\infty$. It is proved that the proposed controls $u^l(\cdot)$ converge weakly* to $u^*(\cdot)$ in the space $L^1$ of integrable functions.
Keywords: dynamic reconstruction problems, convex–concave discrepancy, problems of calculus of variations, Hamiltonian systems.
@article{TIMM_2021_27_2_a17,
     author = {N. N. Subbotina and E. A. Krupennikov},
     title = {Weak* {Approximations} to the {Solution} of a {Dynamic} {Reconstruction} {Problem}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {208--220},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a17/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - E. A. Krupennikov
TI  - Weak* Approximations to the Solution of a Dynamic Reconstruction Problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 208
EP  - 220
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a17/
LA  - ru
ID  - TIMM_2021_27_2_a17
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A E. A. Krupennikov
%T Weak* Approximations to the Solution of a Dynamic Reconstruction Problem
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 208-220
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a17/
%G ru
%F TIMM_2021_27_2_a17
N. N. Subbotina; E. A. Krupennikov. Weak* Approximations to the Solution of a Dynamic Reconstruction Problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 208-220. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a17/

[1] Subbotina N. N., Krupennikov E. A., “The method of characteristics in an identification problem”, Proc. Steklov Inst. Math., 299 (2017), 205–216 | DOI | MR

[2] Subbotina N. N., Tokmantsev T. B., Krupennikov E. A., “Dynamic programming to reconstruction problems for a macroeconomic model”, IFIP Adv. Inf. Comm. Te., 494 (2016), 472–481 | DOI

[3] Subbotina N. N., Krupennikov E. A., “Hamiltonian systems for dynamic control reconstruction problems”, Minimax Theory Appl., 5:2 (2020), 439–454 | MR | Zbl

[4] Ngoc D. V., Marcelo H., Ang Jr., “Model identification for industrial robots”, Acta Polytechnica Hungarica, 6:5 (2009), 51–68

[5] Sturz Y. R., Affolter L. M., Smith R. S., “Parameter identification of the KUKA LBR iiwa robot including constraints on physical feasibility”, IFAC PapersOnLine, 50:1 (2017), 6863–6868 | DOI

[6] Ren C., Wang N., Liu Q., Liu Ch., “Dynamic force identification problem based on a novel improved Tikhonov regularization”, Mathematical Problems in Engineering Volume, 2019 (2019), 6095184, 13 pp. | DOI | MR | Zbl

[7] Chung J., Saibaba A. K., Brown M., Westman E., “Efficient generalized Golub-Kahan based methods for dynamic inverse problems”, Inverse Problems, 34 (2018), 024005, 12 pp. | DOI | MR | Zbl

[8] Liu Y. C., Chen Y. W., Wang Y. T., Chang J. R., “A high-order Lie groups scheme for solving the recovery of external force in nonlinear system”, Inverse Problems in Science and Engineering, 26:12 (2018), 1749–1783 | DOI | MR | Zbl

[9] D'Autilia M. C., Sgura I., Bozzini B., “Parameter identification in ODE models with oscillatory dynamics: a Fourier regularization approach”, Inverse Problems, 33:12 (2017), 124009 | DOI | MR | Zbl

[10] Schuster N., Burger M., Hahn B., “Dynamic inverse problems: modelling-regularization-numerics. Preface”, Inverse Problems, 34 (2018), 040301, 4 pp. | DOI | MR | Zbl

[11] Sabatier P. C., “Past and future of inverse problems”, J. Math. Phys., 41:6 (2000), 4082 | DOI | MR | Zbl

[12] Vasin V. V., “Methods for solving nonlinear ill-posed problems based on the Tikhonov-Lavrentiev regularization and iterative approximation”, Eurasian J. Math. Comp. Appl., 4:4 (2016), 60–73 | DOI | MR

[13] Kabanikhin S. I., Krivorotko O. I., “Identification of biological models described by systems of nonlinear differential equations”, J. of Inverse and Ill-posed Problems, 23:5 (2015), 519–527 | DOI | MR | Zbl

[14] Schmitt U., Louis A. K., Wolters C., Vauhkonen M., “Efficient algorithms for the regularization of dynamic inverse problems: II. Applications”, Inverse Problems, 18:3 (2002), 659–676 | DOI | MR | Zbl

[15] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Ser. tekhn. kibernetika, 1983, no. 2, 51–60

[16] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[17] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., “Nekotorye algoritmy dinamicheskogo vosstanovleniya vkhodov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 129–161 | Zbl

[18] Tikhonov A. N., “Ob ustoichivosti obratnykh zadach”, Dokl. AN SSSR, 39:5 (1943), 195–198

[19] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp.

[20] Magnus Ya. R., Neidekker Kh., Matrichnoe differentsialnoe ischislenie s prilozheniyami k statistike i ekonometrike, FIZLIT, M., 2002, 486 pp.

[21] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, FIZMATLIT, M., 2004, 572 pp.

[22] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.

[23] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd-vo un-ta, Tbilisi, 1977, 256 pp.