On a problem of dynamic disturbance reconstruction in a nonlinear system of differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 197-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of reconstructing an unknown disturbance in a system of ordinary differential equations of a special kind is investigated on the basis of the approach of the theory of dynamic inversion. A statement is considered in which the disturbance is reconstructed synchronously with the process from incomplete discrete information on a part of coordinates of the phase trajectory. A finite-step software-oriented solution algorithm based on the method of auxiliary closed-loop models is proposed, and its error is estimated. The novelty of the paper is that we consider the inverse problem for a partially observed system with a nonlinear with respect to disturbance equation describing the dynamics of the unmeasured coordinate.
Keywords: system of ordinary differential equations, nonlinearity with respect to disturbance, lack of information, controlled model.
Mots-clés : dynamic reconstruction
@article{TIMM_2021_27_2_a16,
     author = {V. L. Rozenberg},
     title = {On a problem of dynamic disturbance reconstruction in a nonlinear system of differential equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {197--207},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a16/}
}
TY  - JOUR
AU  - V. L. Rozenberg
TI  - On a problem of dynamic disturbance reconstruction in a nonlinear system of differential equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 197
EP  - 207
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a16/
LA  - ru
ID  - TIMM_2021_27_2_a16
ER  - 
%0 Journal Article
%A V. L. Rozenberg
%T On a problem of dynamic disturbance reconstruction in a nonlinear system of differential equations
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 197-207
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a16/
%G ru
%F TIMM_2021_27_2_a16
V. L. Rozenberg. On a problem of dynamic disturbance reconstruction in a nonlinear system of differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 197-207. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a16/

[1] Brockett R.W., Mesarovich M.P., “The reproducivility of multivariable control systems”, J. Math. Anal. and Appl., 11:1–3 (1965), 548–563 | DOI | MR | Zbl

[2] Sain M.K., Massey J.L., “Invertibility of linear time-invariant dynamical systems”, IEEE Trans. Automat. Contr., AC-14 (1969), 141–149 | DOI | MR

[3] Norton J.P., An introduction to identification, Academic Press, London, 1986, 310 pp. | MR | Zbl

[4] Ljung L., Soderstrom T., Theory and practice of recursive identification, M.I.T. Press, Cambridge, 1983, 528 pp. | MR | Zbl

[5] Bar-Shalom Y., Li X.R., Estimation and tracking: principles, techniques, and software, Artech House, Boston, 1993, 511 pp. | MR | Zbl

[6] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1978, 142 pp.

[7] Kabanikhin S.I., Inverse and ill-posed problems, De Gruyter, Berlin, 2011, 459 pp. | MR

[8] Papadimitriou T., Diamantaras K.I., Strintzis M.G., and Roumeliotis M., “Robust estimation of rigid-body 3-D motion parameters based on point correspondences”, IEEE Trans. Circuits Syst. Video Techn., 106:4 (2000), 541–549 | DOI

[9] Keller J.Y., Sauter D., “Kalman filter for discrete-time stochactic linear systems subject to intermittent unknown inputs”, IEEE Trans. Autom. Contr., 104:7 (2013), 1882–1887 | DOI | MR

[10] Kryazhimskii A.V., Osipov Yu.S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60

[11] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[12] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 292 pp.

[13] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1984, 456 pp. | MR

[14] Kryazhimskii A.V., Osipov Yu.S., “Ob ustoichivom pozitsionnom vosstanovlenii upravleniya po izmereniyam chasti koordinat”, Nekotorye zadachi upravleniya i ustoichivosti, UrO AN SSSR, Sverdlovsk, 1989, 33–47 | MR

[15] Maksimov V.I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2000, 305 pp.

[16] Rozenberg V.L., “On a problem of dynamical input reconstruction for a system of special type under conditions of uncertainty”, AIMS Mathematics, 5:5 (2020), 4108–4120 | DOI | MR

[17] Kryazhimskii A.V., Osipov Yu.S., “O nailuchshem priblizhenii operatora differentsirovaniya v klasse neuprezhdayuschikh operatorov”, Mat. zametki, 37:2 (1985), 192–199 | MR

[18] Vdovin A.Yu., K zadache vosstanovleniya vozmuscheniya v dinamicheskoi sisteme, dis. ...kand. fiz.-mat. nauk, Izd-vo UrO AN SSSR, Sverdlovsk, 1989, 117 pp.