Matrix resolving functions in a linear problem of group pursuit with multiple capture
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 185-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of pursuit of one or several evaders by a group of pursuers is considered in a finite-dimensional Euclidean space. The problem is described by the system $$ \dot z_{ij} = A_{ij} z_{ij} + u_i - v_j,\ \ u_i \in U_i,\ \ v_j \in V_j. $$ The aim of the group of pursuers is to capture at least $q$ evaders, where each evader must be captured by at least $m$ different pursuers; the capture moments may be different. The terminal sets are the origin. Matrix resolving functions, which generalize scalar resolving functions, are used as a mathematical basis. Sufficient conditions for the multiple capture of one evader in the class of quasi-strategies are obtained. Under the assumption that the evaders use program strategies and each pursuer captures at most one evader, sufficient conditions for the solvability of the problem on the multiple capture of a given number of evaders are obtained in terms of the initial positions. Hall's theorem on a system of distinct representatives is used to prove the main theorem. Examples are given to illustrate the obtained results.
Keywords: differential game, pursuer, evader, group pursuit.
@article{TIMM_2021_27_2_a15,
     author = {N. N. Petrov},
     title = {Matrix resolving functions in a linear problem of group pursuit with multiple capture},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {185--196},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a15/}
}
TY  - JOUR
AU  - N. N. Petrov
TI  - Matrix resolving functions in a linear problem of group pursuit with multiple capture
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 185
EP  - 196
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a15/
LA  - ru
ID  - TIMM_2021_27_2_a15
ER  - 
%0 Journal Article
%A N. N. Petrov
%T Matrix resolving functions in a linear problem of group pursuit with multiple capture
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 185-196
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a15/
%G ru
%F TIMM_2021_27_2_a15
N. N. Petrov. Matrix resolving functions in a linear problem of group pursuit with multiple capture. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 185-196. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a15/

[1] Isaacs R., Differential games, John Wiley Sons, N Y, 1965, 480 pp. | Zbl

[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[3] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 516 pp.

[4] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[5] Osipov Yu.S., Kryazhimskii A.V., Inverse problems fot ordinary differential equations: dynamical solutions, Cordon Breach, Basel, 1995, 625 pp. | MR

[6] Pontryagin L.S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988, 576 pp.

[7] Chikrii A.A., Konfliktno upravlyamye protsessy, Nauk. dumka, Kiev, 1992, 384 pp.

[8] Chikrii A.A., “Quasilinear controlled prosesses under conflict dynamical systems”, J. Math. Sci., 80:1 (1996), 1489–1518 | DOI | MR

[9] Grigorenko N.L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990, 197 pp.

[10] Pshenichnyi B.N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146

[11] Blagodatskikh A.I., Petrov N.N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurt. un-ta, Izhevsk, 2009, 266 pp.

[12] Chikrii A.A., Rappoport I.S., “Metod razreshayuschikh funktsii v teorii konfliktno-upravlyaemykh protsessov”, Kibernetika i sistemnyi analiz, 2012, no. 4, 40–64 | Zbl

[13] Rappoport I. C., “Strategii gruppovogo sblizheniya v metode razreshayuschikh funktsii dlya kvazilineinykh konfliktno-upravlyaemykh protsessov”, Kibernetika i sistemnyi analiz, 55:1 (2019), 149–163 | MR | Zbl

[14] Petrov N.N., Solov'eva N.A., “Multiple capture of given number of evaders in linear recurrent differential games”, J. Optim. Theory Appl., 182:1 (2019), 417–429 | DOI | MR | Zbl

[15] Petrov N.N., “Zadacha prostogo gruppovogo presledovaniya s fazovymi ogranicheniyami vo vremennykh shkalakh”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 30:2 (2020), 249–258 | DOI | MR

[16] Petrov N.N., Machtakova A.I., “Poimka dvukh skoordinirovannykh ubegayuschikh v zadache s drobnymi proizvodnymi, fazovymi ogranicheniyami i prostoi matritsei”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 56 (2020), 50–62 | DOI | Zbl

[17] Petrov N.N., Soloveva N.A., “K zadache gruppovogo presledovaniya v lineinykh rekurrentnykh differentsialnykh igrakh”, Itogi nauki i tekhniki. Ser. Sovremen. matematika i ee prilozhenie. Tematicheskii obzor, 132 (2017), 81–85

[18] Chikrii A. A., Chikrii G.Ts., “Matrichnye razreshayuschie funktsii v igrovykh zadachakh dinamiki”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 324–333

[19] Chikrii A. A., Chikrii G.Ts., “O matrichnykh razreshayuschikh funktsiyakh v dinamicheskikh zadachakh sblizheniya”, Kibernetika i sistemnyi analiz, 50:2 (2014), 44–63 | Zbl

[20] Chikrii A. A., “Ob odnom analiticheskom metode v dinamicheskikh igrakh sblizheniya”, Tr. MIAN, 271 (2010), 76–92 | Zbl

[21] Aubin J.P., Frankowska H., Set-valued analysis, Birkhauser, Boston, 1990, 461 pp. | MR | Zbl