On Extremal Shift Strategies in Time-Delay Systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 150-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a differential game in which the motion of a conflict-control dynamic system is described by a delay differential equation, the initial condition is determined by a piecewise continuous function, and the quality index assesses the history of the motion realized by the terminal time and involves an integral estimate for the realizations of the players' controls. The optimality of the players' positional strategies constructed by the method of extremal shift to an accompanying point is proved. The main result of the paper states that the accompanying point is chosen from a finite-dimensional neighborhood of the current state of the system.
Keywords: positional differential game, time-delay system, extremal shift.
@article{TIMM_2021_27_2_a12,
     author = {N. Yu. Lukoyanov and A. R. Plaksin},
     title = {On {Extremal} {Shift} {Strategies} in {Time-Delay} {Systems}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {150--161},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a12/}
}
TY  - JOUR
AU  - N. Yu. Lukoyanov
AU  - A. R. Plaksin
TI  - On Extremal Shift Strategies in Time-Delay Systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 150
EP  - 161
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a12/
LA  - ru
ID  - TIMM_2021_27_2_a12
ER  - 
%0 Journal Article
%A N. Yu. Lukoyanov
%A A. R. Plaksin
%T On Extremal Shift Strategies in Time-Delay Systems
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 150-161
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a12/
%G ru
%F TIMM_2021_27_2_a12
N. Yu. Lukoyanov; A. R. Plaksin. On Extremal Shift Strategies in Time-Delay Systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 150-161. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a12/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[3] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 516 pp.

[4] Osipov Yu. S., “K teorii differentsialnykh igr sistem s posledeistviem”, Prikladnaya matematika i mekhanika, 35:2 (1971), 300–311 | Zbl

[5] Osipov Yu. S., “Differentsialnye igry sistem s posledeistviem”, Dokl. AN SSSR, 196:4 (1971), 779–782 | Zbl

[6] Lukoyanov N.Yu., “Hamilton-Jacobi type equation for problems of control of functional differential systems”, IFAC Proceedings Volumes, 33:16 (2000), 591–596 | DOI | MR

[7] Lukoyanov N. Yu., Funktsionalnye uravneniya Gamiltona - Yakobi i zadachi upravleniya s nasledstvennoi informatsiei, Izd-vo UrFU, Ekaterinburg, 2011, 243 pp.

[8] Lukoyanov N. Yu., “On Hamilton - Jacobi formalism in time-delay control systems”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:5 (2010), 269–277

[9] Zverkin A. M., Kamenskii G. A., Norkin S. B., Elsgolts L. E., “Differentsialnye uravneniya s otklonyayuschimsya argumentom”, Uspekhi mat. nauk, 17:2(104) (1962), 77–164 | MR | Zbl

[10] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 225 pp. | MR

[11] Bardi M., Capuzzo-Dolcetta I., Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhauser, Boston, 1997, 570 pp. | MR | Zbl

[12] Plaksin A., “Viscosity solutions of HJBI equations for time-delay systems”, 2020, 22 pp., arXiv: 2001.07905 | MR

[13] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp.