Stable tracking under incomplete and changing information
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 141-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of tracking a trajectory of a dynamical system described by a system of ordinary differential equations. It is required to design a feedback control algorithm guaranteeing a prescribed quality of the controlled process; more exactly, the trajectory of the system must track a given trajectory of a certain reference system subject to an unknown disturbance. We propose two algorithms, which cover the cases of continuous and discrete measurement of phase states, respectively. The algorithms are stable with respect to information noises and computational errors.
Keywords: trajectory tracking, phase states, differential equations.
@article{TIMM_2021_27_2_a11,
     author = {E. T. Larin},
     title = {Stable tracking under incomplete and changing information},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {141--149},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a11/}
}
TY  - JOUR
AU  - E. T. Larin
TI  - Stable tracking under incomplete and changing information
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 141
EP  - 149
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a11/
LA  - ru
ID  - TIMM_2021_27_2_a11
ER  - 
%0 Journal Article
%A E. T. Larin
%T Stable tracking under incomplete and changing information
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 141-149
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a11/
%G ru
%F TIMM_2021_27_2_a11
E. T. Larin. Stable tracking under incomplete and changing information. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 141-149. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a11/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 451 pp. | MR

[2] Krasovskii N.N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 392 pp.

[3] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi: Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985

[4] Maksimov V.I., “Ob otslezhivanii resheniya parabolicheskogo uravneniya”, Izv. vuzov. Matematika, 2012, no. 1, 40–48 | Zbl

[5] Krasovskii N.N., Kotelnikova A.N., “Odna zadacha ob ustoichivom otslezhivanii dvizheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12:1 (2006), 142–156 | MR | Zbl

[6] Blizorukova M.S., Maksimov V.I., “Ob odnom algoritme otslezhivaniya dvizheniya etalonnoi sistemy s posledeistviem pri izmerenii chasti koordinat”, Differents. uravneniya, 47:3 (2011), 415–421 | MR

[7] Maksimov V.I., “Ob odnom algoritme upravleniya lineinoi sistemoi pri izmereniya chasti koordinat fazovogo vektora”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 218–230