Stable Boundary Control of a Parabolic Equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 7-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of boundary control is considered for a differential equation with distributed parameters. It is required to design an algorithm that forms a feedback control and guarantees a prescribed quality of the controlled process. More exactly, the solution of this equation should track the solution of another equation, which is subject to an unknown perturbation. Methods for solving problems of this type for systems described by ordinary differential equations are well known and are presented, in particular, within the theory of positional control. In the present paper, we study a tracking problem in which the role of the control object is played by an equation with distributed parameters. It is assumed that the solutions of the equations are measured with an error, and the only available information about the perturbation is that it is an element of the space of functions summable with the square of the Euclidean norm; i.e., the perturbation can be unbounded. Taking into account these features of the problem, we design solution algorithms that are stable under information disturbances and computational errors. The algorithms are based on a combination of elements of the theory of ill-posed problems with the extremal shift method known in the theory of positional differential games.
Keywords: systems with distributed parameters, control.
@article{TIMM_2021_27_2_a0,
     author = {H. Akca and V. I. Maksimov},
     title = {Stable {Boundary} {Control} of a {Parabolic} {Equation}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {7--18},
     year = {2021},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a0/}
}
TY  - JOUR
AU  - H. Akca
AU  - V. I. Maksimov
TI  - Stable Boundary Control of a Parabolic Equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 7
EP  - 18
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a0/
LA  - ru
ID  - TIMM_2021_27_2_a0
ER  - 
%0 Journal Article
%A H. Akca
%A V. I. Maksimov
%T Stable Boundary Control of a Parabolic Equation
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 7-18
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a0/
%G ru
%F TIMM_2021_27_2_a0
H. Akca; V. I. Maksimov. Stable Boundary Control of a Parabolic Equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 2, pp. 7-18. http://geodesic.mathdoc.fr/item/TIMM_2021_27_2_a0/

[1] Lasiecka I., Triggiani R., Control theory for partial differential equations: Continuous and approximation theories, v. I, Abstract parabolic systems, Cambridge, 2000, 648 pp. | MR

[2] Tucshak M., Weiss G., Observation and control for operator semigroups, Birkhauser, Berlin, 2009, 483 pp. | DOI | MR

[3] Pandolfi L., Distributed systems with persistent memory: Control and moment problems, Springer, Berlin, 2014, 152 pp. | DOI | MR | Zbl

[4] Fursikov A.V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauch. kn., Novosibirsk, 1999, 360 pp.

[5] Troltzsch F., Optimal control of partial differential equations. Theory, methods and applications, Rhode Island, 2010, 408 pp. | MR | Zbl

[6] Korbich Yu.S., Maksimov V.I., Osipov Yu.S., “Dinamicheskoe modelirovanie upravlenii v nekotorykh parabolicheskikh sistemakh”, Prikl. matematika i mekhanika, 54:3 (1990), 355–360 | MR | Zbl

[7] Osipov Yu.S., Pandolfi L., Maksimov V.I., “Zadacha robastnogo granichnogo upravleniya: sluchai kraevykh uslovii Dirikhle”, Dokl. RAN, 374:3 (2000), 310–312 | MR | Zbl

[8] Maksimov V., Pandolfi L., “Dynamical reconstruction of inputs for contraction semigroup system. Boundary input case”, J. Optim. Theory Appl., 103:2 (1999), 401–420 | DOI | MR | Zbl

[9] Osipov Yu.S., Pandolfi L., Maksimov V.I., “Problems of dynamic reconstruction and robust boundary control: The case of Dirichlet boundary conditions”, J. Inverse Ill-Posed Probl., 9:2 (2001), 149–162 | DOI | MR | Zbl

[10] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., “Metod ekstremalnogo sdviga N.N. Krasovskogo i zadachi granichnogo upravleniya”, Avtomatika i telemekhanika, 2009, no. 4, 18–30 | Zbl

[11] Maksimov V.I., Osipov Yu.S., “O granichnom upravlenii raspredelennoi sistemoi na beskonechnom promezhutke vremeni”, Zhurn. vychislit. matematiki i mat. fiziki, 56:1 (2016), 14–26 | MR

[12] Maksimov V.I., “On reconstruction of boundary controls in a parabolic equations”, Advances in Diff. Eq., 14:11–12 (2009), 1193–1211 | MR | Zbl

[13] Maksimov V.I., “On the tracking of a trajectory and a control by the feedback principle”, Control Theory Appl., ed. Vito G. Massari, Nova Science Publishers, N Y, 2011, 55–81

[14] Schlogl F., “Chemical reaction models for non-equilibrium phase-transitions”, Zeitschrift fur Physik, 253 (1972), 147–161 | DOI

[15] Gugat M., Troltzsch F., “Boundary feedback stabilization of the Schlogl system”, Automatica, 51:1 (2015), 192–199 | DOI | MR | Zbl

[16] Buchholz R., Engel H., Kanimann E., Troltzsch F., “On the optimal control Schlogl-model”, Comput. Optim. Appl., 5:1 (2013), 153–185 | DOI | MR

[17] Casas E., Rull C., Troltzsch F., “Sparse optimal control of the Schlogl and FitzHugh-Nagumo systems”, Comput. Methods Appl. Math., 13:4 (2013), 415–442 | DOI | MR | Zbl

[18] Breiten T., Kunisch K., “Riccati based feedback control of the monodomain equations with the FitzHugh-Nagumo model”, SIAM J. Contr. Optim., 52:6 (2014), 4057–4081 | DOI | MR