On two problems from “The Kourovka Notebook”
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 98-102
Voir la notice du chapitre de livre
We solve Problems 19.87 and 19.88 formulated by A.N. Skiba in “The Kourovka Notebook.” It is proved that if, for every Sylow subgroup $P$ of a finite group $G$ and every maximal subgroup $V$ of $P$, there is a $\sigma$-soluble ($\sigma$-nilpotent) subgroup $T$ such that $VT=G$, then $G$ is $\sigma$-soluble ($\sigma$-nilpotent, respectively).
Keywords:
finite group, $\sigma$-nilpotent group, partition of the set of all prime numbers, Sylow subgroup, maximal subgroup.
Mots-clés : $\sigma$-soluble group
Mots-clés : $\sigma$-soluble group
@article{TIMM_2021_27_1_a9,
author = {S. F. Kamornikov and V. N. Tyutyanov},
title = {On two problems from {{\textquotedblleft}The} {Kourovka} {Notebook{\textquotedblright}}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {98--102},
year = {2021},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a9/}
}
S. F. Kamornikov; V. N. Tyutyanov. On two problems from “The Kourovka Notebook”. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 98-102. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a9/
[1] Unsolved problems in group theory. The Kourovka notebook, [e-resource], Novosibirsk, 250 pp. URL: http://math.nsc.ru/~alglog/19tkt.pdf
[2] Skiba A.N., “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[3] Guralnick R.M., “Subgroups of prime power index in a simple group”, J. Algebra, 81:2 (1983), 304–311 | DOI | MR | Zbl
[4] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin; N Y, 1992, 891 pp. | MR