On two problems from ``The Kourovka Notebook''
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 98-102
Voir la notice de l'article provenant de la source Math-Net.Ru
We solve Problems 19.87 and 19.88 formulated by A.N. Skiba in “The Kourovka Notebook.” It is proved that if, for every Sylow subgroup $P$ of a finite group $G$ and every maximal subgroup $V$ of $P$, there is a $\sigma$-soluble ($\sigma$-nilpotent) subgroup $T$ such that $VT=G$, then $G$ is $\sigma$-soluble ($\sigma$-nilpotent, respectively).
Keywords:
finite group, $\sigma$-nilpotent group, partition of the set of all prime numbers, Sylow subgroup, maximal subgroup.
Mots-clés : $\sigma$-soluble group
Mots-clés : $\sigma$-soluble group
@article{TIMM_2021_27_1_a9,
author = {S. F. Kamornikov and V. N. Tyutyanov},
title = {On two problems from {``The} {Kourovka} {Notebook''}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {98--102},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a9/}
}
S. F. Kamornikov; V. N. Tyutyanov. On two problems from ``The Kourovka Notebook''. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 98-102. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a9/