On two problems from ``The Kourovka Notebook''
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 98-102

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve Problems 19.87 and 19.88 formulated by A.N. Skiba in “The Kourovka Notebook.” It is proved that if, for every Sylow subgroup $P$ of a finite group $G$ and every maximal subgroup $V$ of $P$, there is a $\sigma$-soluble ($\sigma$-nilpotent) subgroup $T$ such that $VT=G$, then $G$ is $\sigma$-soluble ($\sigma$-nilpotent, respectively).
Keywords: finite group, $\sigma$-nilpotent group, partition of the set of all prime numbers, Sylow subgroup, maximal subgroup.
Mots-clés : $\sigma$-soluble group
@article{TIMM_2021_27_1_a9,
     author = {S. F. Kamornikov and V. N. Tyutyanov},
     title = {On two problems from {``The} {Kourovka} {Notebook''}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--102},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a9/}
}
TY  - JOUR
AU  - S. F. Kamornikov
AU  - V. N. Tyutyanov
TI  - On two problems from ``The Kourovka Notebook''
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 98
EP  - 102
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a9/
LA  - ru
ID  - TIMM_2021_27_1_a9
ER  - 
%0 Journal Article
%A S. F. Kamornikov
%A V. N. Tyutyanov
%T On two problems from ``The Kourovka Notebook''
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 98-102
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a9/
%G ru
%F TIMM_2021_27_1_a9
S. F. Kamornikov; V. N. Tyutyanov. On two problems from ``The Kourovka Notebook''. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 98-102. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a9/