On two problems from “The Kourovka Notebook”
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 98-102
Cet article a éte moissonné depuis la source Math-Net.Ru
We solve Problems 19.87 and 19.88 formulated by A.N. Skiba in “The Kourovka Notebook.” It is proved that if, for every Sylow subgroup $P$ of a finite group $G$ and every maximal subgroup $V$ of $P$, there is a $\sigma$-soluble ($\sigma$-nilpotent) subgroup $T$ such that $VT=G$, then $G$ is $\sigma$-soluble ($\sigma$-nilpotent, respectively).
Keywords:
finite group, $\sigma$-nilpotent group, partition of the set of all prime numbers, Sylow subgroup, maximal subgroup.
Mots-clés : $\sigma$-soluble group
Mots-clés : $\sigma$-soluble group
@article{TIMM_2021_27_1_a9,
author = {S. F. Kamornikov and V. N. Tyutyanov},
title = {On two problems from {{\textquotedblleft}The} {Kourovka} {Notebook{\textquotedblright}}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {98--102},
year = {2021},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a9/}
}
S. F. Kamornikov; V. N. Tyutyanov. On two problems from “The Kourovka Notebook”. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 98-102. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a9/
[1] Unsolved problems in group theory. The Kourovka notebook, [e-resource], Novosibirsk, 250 pp. URL: http://math.nsc.ru/~alglog/19tkt.pdf
[2] Skiba A.N., “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[3] Guralnick R.M., “Subgroups of prime power index in a simple group”, J. Algebra, 81:2 (1983), 304–311 | DOI | MR | Zbl
[4] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin; N Y, 1992, 891 pp. | MR