Mots-clés : maximal internal $\omega\sigma$-satellite
@article{TIMM_2021_27_1_a8,
author = {O. V. Kamozina},
title = {Satellites and products of $\omega\sigma$-fibered {Fitting} classes},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {88--97},
year = {2021},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a8/}
}
O. V. Kamozina. Satellites and products of $\omega\sigma$-fibered Fitting classes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 88-97. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a8/
[1] Vorobev N.N., Skiba A.N., “O distributivnosti reshetki razreshimykh totalno lokalnykh klassov Fittinga”, Mat. zametki, 67:5 (2000), 662–673 | MR | Zbl
[2] Safonov V.G., Safonova I.N., “O minimalnykh totalno lokalnykh ne $\pi$-nilpotentnykh klassakh Fittinga”, Izv. Gomel. gos. un-ta im. F. Skoriny, 2016, no. 6 (99), 91–95
[3] Egorova V.E., “Kriticheskie neodnoporozhdennye totalno kanonicheskie klassy Fittinga konechnykh grupp”, Mat. zametki, 83:4 (2008), 520–527 | Zbl
[4] Kamozina O.V., “$\omega$$\sigma$-veernye klassy Fittinga”, Chebysh. sb., 21:4 (2020), 107–116 | DOI | MR
[5] Skiba A.N., “On one generalization of the local formations”, Problemy fiziki, matematiki i tekhniki, 2018, no. 1(34), 79–82 | MR | Zbl
[6] Skiba A.N., Shemetkov L.A., “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Mat. tr., 2:2 (1999), 114–147 | MR | Zbl
[7] Doerk K., Nawkes T., Finite soluble groups, Walter de Gruyter, Berlin; N Y, 1992, 892 pp. | MR
[8] Vedernikov V.A., “O novykh tipakh $\omega$-veernykh klassov Fittinga konechnykh grupp”, Ukrain. mat. zhurn., 54:7 (2002), 897–906 | DOI | MR | Zbl