On the existence of a periodic solution of the Lienard system with impulse effect
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 79-87
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a system of Liénard differential equations with impulse effect $$ \frac{dx}{dt}=z-F(x),\quad \frac{dz}{dt}=-g(x),\quad \text{ for}\quad x\ne 0, $$ $$ \Delta x=0,\quad \Delta z=J(z)\quad \text{ for}\quad x= 0. $$ Sufficient conditions for the existence of a periodic solution of this system are obtained.
Keywords:
systems of differential equations with impulse effect, Liénard system, limit cycle.
@article{TIMM_2021_27_1_a7,
author = {A. O. Ignatyev},
title = {On the existence of a periodic solution of the {Lienard} system with impulse effect},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {79--87},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a7/}
}
TY - JOUR AU - A. O. Ignatyev TI - On the existence of a periodic solution of the Lienard system with impulse effect JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 79 EP - 87 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a7/ LA - ru ID - TIMM_2021_27_1_a7 ER -
A. O. Ignatyev. On the existence of a periodic solution of the Lienard system with impulse effect. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 79-87. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a7/