On the existence of a periodic solution of the Lienard system with impulse effect
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 79-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a system of Liénard differential equations with impulse effect $$ \frac{dx}{dt}=z-F(x),\quad \frac{dz}{dt}=-g(x),\quad \text{ for}\quad x\ne 0, $$ $$ \Delta x=0,\quad \Delta z=J(z)\quad \text{ for}\quad x= 0. $$ Sufficient conditions for the existence of a periodic solution of this system are obtained.
Keywords: systems of differential equations with impulse effect, limit cycle.
Mots-clés : Liénard system
@article{TIMM_2021_27_1_a7,
     author = {A. O. Ignatyev},
     title = {On the existence of a periodic solution of the {Lienard} system with impulse effect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {79--87},
     year = {2021},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a7/}
}
TY  - JOUR
AU  - A. O. Ignatyev
TI  - On the existence of a periodic solution of the Lienard system with impulse effect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 79
EP  - 87
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a7/
LA  - ru
ID  - TIMM_2021_27_1_a7
ER  - 
%0 Journal Article
%A A. O. Ignatyev
%T On the existence of a periodic solution of the Lienard system with impulse effect
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 79-87
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a7/
%G ru
%F TIMM_2021_27_1_a7
A. O. Ignatyev. On the existence of a periodic solution of the Lienard system with impulse effect. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 79-87. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a7/

[1] Bainov D.D., Simeonov P.S., Systems with impulse effect: stability, theory and applications, Halsted Press, N Y; Chichester; Brisbane; Toronto, 1989, 256 pp. | MR | Zbl

[2] Lakshmikantham V., Bainov D.D., Simeonov P.S., Theory of impulsive differential equations, World Scientific, Singapure; N J; London, 1989, 273 pp. | DOI | MR | Zbl

[3] D'Onofrio A., “Pulse vaccination strategy in the SIR epidemic model: Global asymptotic stable eradication in presence of vaccine failures”, Mathematical and Computer Modellin, 36 (2002), 473–489 | DOI | MR | Zbl

[4] Smith R.J., Wahl L.M., “Distinct effects of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infection with impulsive drug effects”, Bulletin Math. Biolog, 66 (2004), 1259–1283 | DOI | MR | Zbl

[5] Jiao J., Liu Z., Li L., Nie X., “Threshold dynamics of a stage-structured single population model with non-transient and transient impulsive effects”, Applied Math. Letter, 97:1 (2019), 88–92 | DOI | MR | Zbl

[6] Ignatev A.O., “Metod funktsii Lyapunova v zadachakh ustoichivosti reshenii sistem differentsialnykh uravnenii s impulsnym vozdeistviem”, Mat. sb., 194:10 (2003), 117–132 | Zbl

[7] Dvirnyi A.I., Slynko V.I., “Analog kriticheskogo sluchaya A.M. Molchanova dlya impulsnykh sistem”, Avtomatika i telemekhanik, 76:6 (2015), 3–17 | MR | Zbl

[8] Haddad W.M., Chellaboina V., Nersesov S.G., Impulsive and hybrid dynamical systems: stability, dissipativity, and control, Princeton University Press, Princeton, 2006, 520 pp. | DOI | MR | Zbl

[9] Graef J.R., Kadari H., Ouahab A., and Oumansour A., “Existence results for systems of second-order impulsive differential equations”, Acta Math. Univ. Comenianae, 88:1 (2019), 51–66 | MR | Zbl

[10] Levinson N. and Smith O., “A general equation for relaxation oscillations”, Duke Math. J., 9:2 (1942), 382–403 | DOI | MR | Zbl

[11] Ignatev A.O., “Otsenka amplitudy predelnogo tsikla uravneniya Lenara”, Differents. uravneniya, 53:3 (2017), 312–320 | Zbl

[12] Ignatyev A.O., “The domain of existence of a limit cycle of Li$\acute{\mathrm{e}}$nard system”, Lobachevskii J. Math., 38:2 (2017), 271–279 | DOI | MR | Zbl

[13] Carletti T., Villari G., “A note on existence and uniqueness of limit cycles for Liénard systems”, J. Math. Analysis Appl., 307:2 (2005), 763–773 | DOI | MR | Zbl

[14] Sabatini M., Vilari G., “On the uniqueness of limit cycles for Lienard equation: the legacy of G. Sansone”, Matematiche (Catania), 65:2 (2010), 201–214 | MR | Zbl

[15] Belley J.M., Guen R., “Periodic van der Pol equation with state dependent impulses”, J. Math. Analysis Appl., 426 (2015), 995–1011 | DOI | MR | Zbl

[16] Herrera L., Montano O., Orlov Yu., “Hopf bifurcation of hybrid Van der Pol oscillators”, Nonlinear Analysis: Hybrid Systems, 26 (2017), 225–238 | DOI | MR | Zbl

[17] Ding B., Pan S., Ding C., “The index of impulsive periodic orbits”, Nonlinear Analysis, 192 (2020), 1–9 | DOI | MR