Generating sets of conjugate involutions of the groups $SL_n(q)$ for $n=4,5,7,8$ and odd $q$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 62-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In 2009 J. M. Ward answered for sporadic and alternating groups and for projective special linear groups $PSL_n(q)$ over a field of odd order $q$ except for the case $q=9$ for $n\geq 4$ and, for $n=6$, the case $q\equiv 3\mod 4$ Question 14.69c from The Kourovka Notebook posed by the second author of the present paper: For every finite simple nonabelian group $G$, find the minimum number $n_c(G)$ of generating conjugate involutions whose product is $1$. It is known that $n_c(G)\geq 5$ for any simple nonabelian group $G$. We discard the constraint $q\neq 9$ for the dimensions $n=4,5,7,8$. It turns out that in these dimensions the generating quintiples of conjugate involutions with the product equal to 1 for special linear groups $SL_n(q)$ and, consequently, for $PSL_n(q)$, specified by Ward, are also suitable for $q=9$.
Keywords: spacial linear group over a finite field, generating triples of conjugate involutions.
@article{TIMM_2021_27_1_a5,
     author = {I. Yu. Efimov and Ya. N. Nuzhin},
     title = {Generating sets of conjugate involutions of the groups $SL_n(q)$ for $n=4,5,7,8$ and odd $q$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {62--69},
     year = {2021},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a5/}
}
TY  - JOUR
AU  - I. Yu. Efimov
AU  - Ya. N. Nuzhin
TI  - Generating sets of conjugate involutions of the groups $SL_n(q)$ for $n=4,5,7,8$ and odd $q$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 62
EP  - 69
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a5/
LA  - ru
ID  - TIMM_2021_27_1_a5
ER  - 
%0 Journal Article
%A I. Yu. Efimov
%A Ya. N. Nuzhin
%T Generating sets of conjugate involutions of the groups $SL_n(q)$ for $n=4,5,7,8$ and odd $q$
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 62-69
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a5/
%G ru
%F TIMM_2021_27_1_a5
I. Yu. Efimov; Ya. N. Nuzhin. Generating sets of conjugate involutions of the groups $SL_n(q)$ for $n=4,5,7,8$ and odd $q$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 62-69. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a5/

[1] Unsolved problems in group theory. The Kourovka notebook, [e-resource], 19, Novosibirsk, 2018, 250 pp. URL: http://math.nsc.ru/~lglog/19kt.pdf

[2] Nuzhin Ya.N., “O porozhdayuschikh mnozhestvakh involyutsii prostykh konechnykh grupp”, Algebra i logika, 58:3 (2019), 426–434 | MR | Zbl

[3] Di Martino L., Tamburini M.C., “2-generation of finite simple groups and some related topics”, Generatots and Ralations in Groups and Geometries, NATO ASI Ser., 333, eds. A. Barlotti et al., Kluwer Acad. Publ., Dordrecht, 1991, 195–233 | DOI | MR

[4] Ward J.M., Generation of simple groups by conjugate involutions, Thesis of Doctor of Philosophi, Queen Mary college, University of London, 2009, 193 pp.

[5] Levchuk V.M., “Zamechanie k teoreme L. Diksona”, Algebra i logika, 22:4 (1983), 421–434 | MR | Zbl

[6] Levchuk V.M., “O porozhdayuschikh mnozhestvakh kornevykh elementov grupp Shevalle nad polem”, Algebra i logika, 22:5 (1983), 526–541 | MR

[7] Nuzhin Ya.N., “Porozhdayuschie mnozhestva elementov grupp Shevalle nad konechnym polem”, Algebra i logika, 28:6 (1989), 670–686 | MR | Zbl

[8] Di Martino L., Vavilov N., “$(2,3)$-generation of $SL(n,q)$. I. Cases $n = 5,6,7$”, Comm. Algebra, 22 (1994), 1321–1347 | DOI | MR | Zbl

[9] Tabakov K., Tchakerian K., “$(2,3)$-generation of the groups $PSL_6(q)$”, Serdica Math. J., 37 (2011), 365–370 | MR | Zbl

[10] Pellegrini M.A., “The $(2,3)$-generation of the special linear groups over finite fields”, Bull. Aust. Math. Soc., 95:1 (2017), 48–53 | DOI | MR | Zbl