Asymptotics of the optimal time of transferring a linear control system with zero real parts of the eigenvalues of the matrix at the fast variables to an unbounded target set
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 48-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is devoted to a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric constraints on the control and an unbounded target set: $$ \left\{ \begin{array}{llll} \phantom{\varepsilon}\dot{x}=y,\, x,\,y\in \mathbb{R}^{2m},\quad u\in \mathbb{R}^{2m},\\[1ex] \varepsilon\dot{y}=Jy-Ju,\,\|u\|\leqslant 1,\quad \varepsilon\ll 1,\\[1ex] x(0)=x^0,\quad y(0)=\varepsilon y^0,\\[1ex] x(T_\varepsilon)=0,\quad y(T_\varepsilon)\in \mathbb{R}^{2m},\quad T_\varepsilon \longrightarrow \min, \end{array} \right. $$ where $$ J=\left(\begin{array}{rr} 0\beta \cdot I\\ -\beta \cdot I0\end{array}\right), \quad \beta>0. $$ The eigenvalues of the matrix $J$ at the fast variables do not satisfy the standard requirement that the real part is negative. The solvability of the problem is proved. We also construct and justify a complete power asymptotic expansion in the sense of Erdelyi of the optimal time as the small parameter $\varepsilon$ at the derivatives in the equations of the system tends to zero over some set. It is shown that the form of the asymptotics depends essentially on the set over which the small parameter tends to zero.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problem, small parameter.
@article{TIMM_2021_27_1_a4,
     author = {A. R. Danilin and O. O. Kovrizhnykh},
     title = {Asymptotics of the optimal time of transferring a linear control system with zero real parts of the eigenvalues of the matrix at the fast variables to an unbounded target set},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {48--61},
     year = {2021},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a4/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - O. O. Kovrizhnykh
TI  - Asymptotics of the optimal time of transferring a linear control system with zero real parts of the eigenvalues of the matrix at the fast variables to an unbounded target set
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 48
EP  - 61
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a4/
LA  - ru
ID  - TIMM_2021_27_1_a4
ER  - 
%0 Journal Article
%A A. R. Danilin
%A O. O. Kovrizhnykh
%T Asymptotics of the optimal time of transferring a linear control system with zero real parts of the eigenvalues of the matrix at the fast variables to an unbounded target set
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 48-61
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a4/
%G ru
%F TIMM_2021_27_1_a4
A. R. Danilin; O. O. Kovrizhnykh. Asymptotics of the optimal time of transferring a linear control system with zero real parts of the eigenvalues of the matrix at the fast variables to an unbounded target set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 48-61. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a4/

[1] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Dmitriev M.G., Kurina G.A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | Zbl

[3] Zhang Y., Naidu D.S., Chenxiao Cai and Yun Zou, “Singular perturbations and time scales in control theories and applications: an overview 2002-2012”, Inter. journal of informaton and systems sciences, 9:1 (2014), 1–36 | MR

[4] Kokotovic P.V., Haddad A.H., “Controllability and time-optimal control of systems with slow and fast modes”, IEEE Trans. Automat. Control, 20:1 (1975), 111–113 | DOI | MR | Zbl

[5] Donchev A., Sistemy optimalnogo upravleniya: Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Mir, M., 1987, 156 pp.

[6] Donchev A.L., Veliev V.M., “Singular Perturbation in Mayer's Problem for Linear Systems”, SIAM J. Control Optim., 21:4 (1983), 566–581 | DOI | MR

[7] Kurina G.A., Nguen T.Kh., “Asimptoticheskoe reshenie singulyarno vozmuschennykh lineino-kvadratichnykh zadach optimalnogo upravleniya s razryvnymi koeffitsientami”, Zhurn. vychisl. matematiki i mat. fiziki, 52:4 (2012), 628–652 | MR | Zbl

[8] Kurina G.A., Hoai N.T., “Projector Approach for Constructing the Zero Order Asymptotic Solution for the Singularly Perturbed Linear-Quadratic Control Problem in a Critical Case”, AIP Conference Proceedings, 1997 (2018), 020073 | DOI

[9] Kalashnikova M.A., Kurina G.A., “Pryamaya skhema asimptoticheskogo resheniya lineino-kvadratichnykh zadach s deshevymi upravleniyami raznoi tseny”, Differents. uravneniya, 55:1 (2019), 83–102 | MR | Zbl

[10] Danilin A.R., Kovrizhnykh O.O., “Asimptotika resheniya singulyarno vozmuschennoi zadachi bystrodeistviya perevoda ob'ekta na mnozhestvo”, Tr. Instituta matematiki i mekhaniki UrO RAN, 26:2 (2020), 132–146 | DOI | MR

[11] Danilin A.R., Kovrizhnykh O.O., “O zavisimosti zadachi bystrodeistviya dlya lineinoi sistemy ot dvukh malykh parametrov”, Matematika, mekhanika, informatika, v. 14, Vest. ChelGU, no. 27, 2011, 46–60

[12] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[13] Blagodatskikh V.I., Vvedenie v optimalnoe upravlenie, Vyssh. shk., M., 2001, 239 pp.

[14] Erdelui A., Wyman M., “The asymptotic evaluation of certain integrals”, Arsh. Ration. Mech. Anal., 14 (1963), 217–260 | DOI | MR