2020 Ural Workshop on Group Theory and Combinatorics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 273-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A review of the main events of the 2020 Ural Workshop on Group Theory and Combinatorics, held online on August 24-30, 2020, is presented, and a list of open problems with comments is given. Open problems were formulated by the participants at the Open Problems Session held at the end of the workshop.
Keywords: almost simple group; axial algebra of Jordan type; Cayley graph; chromatic number of a graph; conjugacy class sizes of a finite group; distance-regular graph; finite group; group with non-simple socle; Gruenberg-Kegel graph (prime garph); intersection of nilpotent subgroups; Moore graph; ordinary depth of a subgroup; partitions of a set; spectrum of a finite group; strongly regular graph; totally k-closed group; weak second maximal subgroup.
@article{TIMM_2021_27_1_a24,
     author = {N. V. Maslova},
     title = {2020 {Ural} {Workshop} on {Group} {Theory} and {Combinatorics}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {273--282},
     year = {2021},
     volume = {27},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a24/}
}
TY  - JOUR
AU  - N. V. Maslova
TI  - 2020 Ural Workshop on Group Theory and Combinatorics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 273
EP  - 282
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a24/
LA  - en
ID  - TIMM_2021_27_1_a24
ER  - 
%0 Journal Article
%A N. V. Maslova
%T 2020 Ural Workshop on Group Theory and Combinatorics
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 273-282
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a24/
%G en
%F TIMM_2021_27_1_a24
N. V. Maslova. 2020 Ural Workshop on Group Theory and Combinatorics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 273-282. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a24/

[1] Abdollahi A., Arezoomand M., “Finite nilpotent groups that coincide with their 2-closures in all of their faithful permutation representations”, J. Algebra Appl., 17:4 (2018), 1850065 | DOI | MR | Zbl

[2] Abdollahi A., Arezoomand M., Tracey G., On finite totally 2-closed groups, arXiv: math.2001.09597v2

[3] Bailey R.A., Cameron P.J., Praeger C.E., Schneider C., The geometry of diagonal groups, arXiv: math.2007.10726v1

[4] Bray J.N., Cai Q., Cameron P.J., Spiga P., Zhang H., “The Hall-Paige conjecture, and synchronization for affine and diagonal groups”, J. Algebra, 545 (2020), 27–42 | DOI | MR | Zbl

[5] Bannai E., Ito T., “On finite Moore graphs”, Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, 20 (1973), 191–208 | MR | Zbl

[6] Belousov I.N., Makhnev A.A., “Distance-regular graphs with intersection arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist”, Sib. Elektron. Mat. Izv., 15 (2018), 1506–1512, (in Russian) | DOI | MR | Zbl

[7] Boltje R., Danz S., Kulshammer B., “On the depth of subgroups and group algebra extensions”, J. Algebra, 335:1 (2011), 258-281 | DOI | MR | Zbl

[8] Boltje R., Kulshammer B., “Group algebra extensions of depth one”, Algebra and Number Theory, 5:1 (2011), 63–73 | DOI | MR | Zbl

[9] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; N Y, 1989, 495 pp. | MR | Zbl

[10] Burciu S., Kadison L., Kulshammer B., “On subgroup depth”, Int. Electron. J. Algebra, 9:9 (2011), 133–166 | MR | Zbl

[11] Cameron P.J., Maslova N.V., Criterion of unrecognizability of a finite group by its Gruenberg-Kegel graph, arXiv: math.2012.01482v2

[12] Churikov D., Praeger C.E., “Finite totally k-closed groups”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27:1 (2021), 240–245 | DOI

[13] Dalfo C., “A survey on the missing Moore graph”, Linear Algebra and its Applications, 569 (2019), 1–14 | DOI | MR | Zbl

[14] Damerell R.M., “On Moore graphs”, Math. Proc. Cambr. Phil. Soc., 74 (1973), 227–236 | DOI | MR | Zbl

[15] Fritzsche T., “The depth of subgroups of $PSL(2,q)$”, J. Algebra, 349:1 (2012), 217–233 | DOI | MR | Zbl

[16] Fritsche T., Kulshammer B., Reiche C., “The depth of Young subgroups of symmetric groups”, J. Algebra, 381 (2013), 96–109 | DOI | MR

[17] Gavrilyuk A.L., Koolen J., “A characterization of the graphs of bilinear $d \times d$-forms over $\mathbb F_2$”, Combinatorica, 39:2 (2019), 289–321 | DOI | MR | Zbl

[18] Golubyatnikov M., “On distance-regular graphs with intersection array $\{7(n - 1),6(n - 2),4(n - 4);1,6,28\}$”, 2020 Ural Workshop on Group Theory and Combinatorics, Abstracts of 2020 Ural Workshop on Group Theory and Combinatorics, N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2020, 46

[19] Gorshkov I.B., “On Thompson's conjecture for finite simple groups”, Communications in Algebra, 47:12 (2019), 5192–5206 | DOI | MR | Zbl

[20] Gorshkov I.B., On existence of normal p-complement of finite groups with restrictions on the conjugacy class sizes, arXiv: math.1812.03641 | MR

[21] Gorshkov I.B., Characterization of groups with non-simple socle, arXiv: math.2011.15088

[22] Gorshkov I.B., Maslova N.V., “The group $J_4 \times J_4$ is recognizable by spectrum”, J. Algebra and Its Applications, arXiv: math.1905.06258 | DOI

[23] Gorshkov I.B., Staroletov A.M., “On primitive 3-generated axial algebras of Jordan type”, J. Algebra, 563 (2020), 74–99 | DOI | MR | Zbl

[24] Grechkoseeva M.A., “On spectra of almost simple extensions of even-dimensional orthogonal groups”, Sib. Math. J., 59:4 (2018), 623–640 | DOI | MR | Zbl

[25] Grechkoseeva M.A., Vasil'ev A.V., “On the structure of finite groups isospectral to finite simple groups”, J. Group Theory, 18:5 (2015), 741–759 | DOI | MR | Zbl

[26] Hall J.I., Segev Y., Shpectorov S., “Miyamoto involutions in axial algebras of Jordan type half”, Isr. J. Math., 223:1 (2018), 261–308 | DOI | MR | Zbl

[27] Hethelyi L., Horvath E., Petenyi F., “The depth of subgroups of Suzuki groups”, Communications in Algebra, 43:10 (2015), 4553–4569 | DOI | MR | Zbl

[28] Hethelyi L., Horvath E., Petenyi F., “The depth of the maximal subgroups of Ree groups”, Communications in Algebra, 47:1 (2019), 37–66 | DOI | MR | Zbl

[29] Hoffman A.J., Singleton R.R., “Moore graphs with diameter 2 and 3”, IBM Journal of Research and Development, 5:4 (1960), 497–504 | DOI | MR

[30] Janabi H.A., Breuer Th., Horvath E., “Subgroups of arbitrary even ordinary depth”, International Journal of Group Theory, 10:4 (2021), 159–166 | DOI | MR | Zbl

[31] Jurishich A., Vidali J., “The Sylvester graph and Moore graphs”, European Journal of Combinatorics, 80 (2019), 184–193 | DOI | MR

[32] Jurishich A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1–2 (2012), 29–47 | DOI | MR

[33] Kadison L., Open problems URL: https://www2.math.upenn.edu/~lkadison/

[34] Kadison L., Kulshammer B., “Depth two, normality, and a trace ideal condition for Frobenius extensions”, Communications in Algebra, 34:9 (2006), 3103–3122 | DOI | MR | Zbl

[35] Unsolved problems in group theory. The Kourovka notebook, 19, eds. E.I. Khukhro and V.D. Mazurov, Inst. Math. SO RAN, Novosibirsk, 2018, 250 pp. URL: https://kourovka-notebook.org/ | MR

[36] Liebeck M.W., Praeger C.E., Saxl J., “On the 2-closures of finite permutation groups”, J. London Math. Soc., 37:2 (1988), 241–252 | DOI | MR | Zbl

[37] Makhnev A.A., Moore graph with parameters (3250,57,0,1) does not exist, arXiv: math.2010.13443v2

[38] Mazurov V.D., “A characterizations of finite nonsimple groups by the set of orders of their elements”, Algebra and Logic, 36:3 (1997), 182–192 | DOI | MR | Zbl

[39] Mazurov V.D., Shi W.J., “A criterion of unrecognizability by spectrum for finite groups”, Algebra and Logic, 51:2 (2012), 160–162 | DOI | MR | Zbl

[40] Metsch K., “On a characterization of bilinear forms graphs”, Europ. J. Comb., 20:4 (1999), 293–306 | DOI | MR | Zbl

[41] Praeger C.E., Saxl J., “Closures of finite primitive permutation groups”, Bull. London Math. Soc., 24 (1992), 251–258 | DOI | MR | Zbl

[42] Segal D., Shalev A., “On groups with bounded conjugacy classes”, Quart. J. of Math. Oxford (2), 50:200 (1999), 505–516 | DOI | MR | Zbl

[43] Soicher L.H., “The uniqueness of a distance-regular graph with intersection array $\{32,27,8,1;1,4,27,32\}$ and related results”, Des. Codes Cryptogr., 84:1 (2017), 101–108 | DOI | MR | Zbl

[44] Ural Seminar on Group Theory and Combinatorics URL: https://conf.uran.ru/Default?cid=2020uwgtc-talk

[45] 2020 Ural Workshop on Group Theory and Combinatorics URL: https://conf.uran.ru/Default?cid=2020uwgtc

[46] Wielandt H.W., Permutation groups through invariant relations and invariant functions, Lecture Notes, Ohio State University, 1969; Wielandt, Helmut, Mathematische Werke (Mathematical works), v. 1, Group theory, Walter de Gruyter and Co., Berlin, 1994, 237–296 | DOI | MR

[47] Zavarnitsine A.V., “Recognition of finite groups by the prime graph”, Algebr. Logic, 45:4 (2006), 220–231 | DOI | MR | Zbl

[48] Zenkov V.I., “Intersection of Abelian subgroups in finite groups”, Math. Notes, 56:2 (1994), 869–871 | DOI | MR | Zbl