Continuation of the theory of $E_\mathfrak{F}$-groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 268-272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We describe the structure of finite groups with $\mathfrak{F}$-subnormal or self-normalizing primary cyclic subgroups when $\mathfrak{F}$ is a subgroup-closed saturated superradical formation containing all nilpotent groups. We prove that groups with absolutely $\mathfrak{F}$-subnormal or self-normalizing primary cyclic subgroups are soluble when $\mathfrak{F}$ is a subgroup-closed saturated formation containing all nilpotent groups.
Keywords: finite group; primary cyclic subgroup; subnormal subgroup; abnormal subgroup; derived subgroup.
@article{TIMM_2021_27_1_a23,
     author = {I. L. Sokhor},
     title = {Continuation of the theory of $E_\mathfrak{F}$-groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {268--272},
     year = {2021},
     volume = {27},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a23/}
}
TY  - JOUR
AU  - I. L. Sokhor
TI  - Continuation of the theory of $E_\mathfrak{F}$-groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 268
EP  - 272
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a23/
LA  - en
ID  - TIMM_2021_27_1_a23
ER  - 
%0 Journal Article
%A I. L. Sokhor
%T Continuation of the theory of $E_\mathfrak{F}$-groups
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 268-272
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a23/
%G en
%F TIMM_2021_27_1_a23
I. L. Sokhor. Continuation of the theory of $E_\mathfrak{F}$-groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 268-272. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a23/

[1] Huppert B., Endliche Gruppen I, Springer-Verl., Berlin, 1967, 793 pp. | MR | Zbl

[2] Skiba A. N., “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309 | DOI | MR | Zbl

[3] Monakhov V. S., “Finite groups with abnormal and $\mathfrak U$-subnormal subgroups”, Sib. Math. J., 57:2 (2016), 352–363 | DOI | MR | Zbl

[4] Monakhov V. S., Sokhor I. L., “Finite groups with formation subnormal primary subgroups”, Sib. Math. J., 58:4 (2017), 663–671 | DOI | MR | Zbl

[5] Ballester-Bolinches A., Ezquerro L. M., Classes of finite groups, Springer-Verl., Dordrecht, 2006, 381 pp. | MR | Zbl

[6] Vdovin E. P., “Carter subgroups of finite groups”, Sib. Adv. Math., 19:1 (2009), 24–74 | DOI | MR

[7] Monakhov V. S., “Schmidt subgroups, their existence and some applications”, Proceedings of Ukrainian Mathematical Congress-2001, Inst. Mat. NAN Ukrainy Publ., Kyiv, 2002, 81–90 ((in Russian)) | MR | Zbl

[8] Semenchuk V.N., “Soluble $\mathfrak{F}$-radical formations”, Math. Notes, 59:2 (1996), 261–266, (in Russian) | DOI | MR | Zbl

[9] The GAP Group, GAP - Groups, Algorithms, and Programming, Ver. 4.11.0 released on 29 February 2020 URL: http://www.gap-system.org

[10] Vasil'ev A. F., Melchenko A. G., “Finite groups with absolutely formationally subnormal Sylow subgroups”, Probl. Fiz. Math. Tekh., 2019, no. 4(41), 44–50, (in Russian) | MR | Zbl