Continuation of the theory of $E_\mathfrak{F}$-groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 268-272

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the structure of finite groups with $\mathfrak{F}$-subnormal or self-normalizing primary cyclic subgroups when $\mathfrak{F}$ is a subgroup-closed saturated superradical formation containing all nilpotent groups. We prove that groups with absolutely $\mathfrak{F}$-subnormal or self-normalizing primary cyclic subgroups are soluble when $\mathfrak{F}$ is a subgroup-closed saturated formation containing all nilpotent groups.
Keywords: finite group; primary cyclic subgroup; subnormal subgroup; abnormal subgroup; derived subgroup.
@article{TIMM_2021_27_1_a23,
     author = {I. L. Sokhor},
     title = {Continuation of the theory of $E_\mathfrak{F}$-groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {268--272},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a23/}
}
TY  - JOUR
AU  - I. L. Sokhor
TI  - Continuation of the theory of $E_\mathfrak{F}$-groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 268
EP  - 272
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a23/
LA  - en
ID  - TIMM_2021_27_1_a23
ER  - 
%0 Journal Article
%A I. L. Sokhor
%T Continuation of the theory of $E_\mathfrak{F}$-groups
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 268-272
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a23/
%G en
%F TIMM_2021_27_1_a23
I. L. Sokhor. Continuation of the theory of $E_\mathfrak{F}$-groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 268-272. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a23/