Continuation of the theory of $E_\mathfrak{F}$-groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 268-272
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the structure of finite groups with $\mathfrak{F}$-subnormal or self-normalizing primary cyclic subgroups when $\mathfrak{F}$ is a subgroup-closed saturated superradical formation containing all nilpotent groups. We prove that groups with absolutely $\mathfrak{F}$-subnormal or self-normalizing primary cyclic subgroups are soluble when $\mathfrak{F}$ is a subgroup-closed saturated formation containing all nilpotent groups.
Keywords:
finite group; primary cyclic subgroup; subnormal subgroup; abnormal subgroup; derived subgroup.
@article{TIMM_2021_27_1_a23,
author = {I. L. Sokhor},
title = {Continuation of the theory of $E_\mathfrak{F}$-groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {268--272},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a23/}
}
I. L. Sokhor. Continuation of the theory of $E_\mathfrak{F}$-groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 268-272. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a23/