On the periodic part of a Shunkov group saturated with linear and unitary groups of degree 3 over finite fields of odd characteristic
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 207-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a group, and let $\mathfrak{X}$ be a set of groups. A group $G$ is saturated with groups from the set $\mathfrak{X}$ if any finite subgroup of $G$ is contained in a subgroup of $G$ isomorphic to some group from $\mathfrak{X}$. If all elements of finite orders from $G$ are contained in a periodic subgroup $T(G)$ of $G$, then $T(G)$ is called the periodic part of $G$. A group $G$ is called a Shunkov group if, for any finite subgroup $H$ of $G$, in $G/N(G)$ any two conjugate elements of prime order generate a finite group. A Shunkov group may have no periodic part. It is proved that a Shunkov group saturated with finite linear and unitary groups of degree 3 over finite fields of characteristic 2 has a periodic part, which is isomorphic to either a linear or a unitary group of degree 3 over a suitable locally finite field of characteristic 2.
Keywords: groups with saturation conditions, Shunkov group, periodic part of a group.
@article{TIMM_2021_27_1_a18,
     author = {A. A. Shlepkin},
     title = {On the periodic part of a {Shunkov} group saturated with linear and unitary groups of degree 3 over finite fields of odd characteristic},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {207--219},
     year = {2021},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a18/}
}
TY  - JOUR
AU  - A. A. Shlepkin
TI  - On the periodic part of a Shunkov group saturated with linear and unitary groups of degree 3 over finite fields of odd characteristic
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 207
EP  - 219
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a18/
LA  - ru
ID  - TIMM_2021_27_1_a18
ER  - 
%0 Journal Article
%A A. A. Shlepkin
%T On the periodic part of a Shunkov group saturated with linear and unitary groups of degree 3 over finite fields of odd characteristic
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 207-219
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a18/
%G ru
%F TIMM_2021_27_1_a18
A. A. Shlepkin. On the periodic part of a Shunkov group saturated with linear and unitary groups of degree 3 over finite fields of odd characteristic. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 207-219. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a18/

[1] Ditsman A.P., “O tsentre $p$-grupp”, Tr. seminara po teorii grupp, M., 1938, 30–34

[2] Kargapolov M.I., Merzlyakov Yu.I., Osnovy teorii grupp, Nauka, M., 1982, 288 pp. | MR

[3] Lytkina D.V., Mazurov V.D., “Periodicheskie gruppy, nasyschennye gruppami $L_3(2^m)$”, Algebra i logika, 46:5 (2007), 606–626 | MR | Zbl

[4] Lytkina D.V, Tukhvatulina L.R., Filippov K.A., “Periodicheskie gruppy, nasyschennye konechnymi prostymi gruppami $U_3(2^m)$”, Algebra i logika, 47:3 (2008), 288–306 | MR | Zbl

[5] Lytkina D.V., “O gruppakh, nasyschennykh konechnymi prostymi gruppami”, Algebra i logika, 48:5 (2009), 628–653 | MR | Zbl

[6] Senashov V.I., Shunkov V.P., Gruppy s usloviyami konechnosti, Izd-vo SO RAN, Novosibirsk, 2001, 326 pp. | MR

[7] Senashov V.I., “O gruppakh Shunkova s silno vlozhennoi pochti sloino konechnoi podgruppoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 234–239

[8] Senashov V.I., Shunkov V.P., “Pochti sloinaya konechnost periodicheskoi chasti gruppy bez involyutsii”, Diskret. matematika, 15:3 (2003), 91–104 | Zbl

[9] Senashov V. I., “Kharakterizatsiya grupp s obobschenno chernikovskoi periodicheskoi chastyu”, Mat. zametki, 67:2 (2000), 270–275 | Zbl

[10] Sozutov A.I., Suchkov N.M., Suchkova N.G., Beskonechnye gruppy s involyutsiyami, Izd-vo SFU, Krasnoyarsk, 2011, 149 pp.

[11] Cherep A.A., “O mnozhestve elementov konechnogo poryadka v biprimitivno konechnoi gruppe”, Algebra i logika, 26:4 (1987), 518–521 | MR

[12] Filippov K.A., “O periodicheskoi chasti gruppy Shunkova, nasyschennoi $L_2(p^n)$”, Vest. SibGAU, 2012, 611–617

[13] Shlepkin A.A., “Gruppy Shunkova, nasyschennye lineinymi i unitarnymi gruppami stepeni 3 nad polyami nechetnykh poryadkov”, Sib. elektron. mat. izv., 13 (2016), 341–351 | MR | Zbl

[14] Shlepkin A.K., “O nekotorykh periodicheskikh gruppakh, nasyschennykh konechnymi prostymi podgruppami”, Mat. tr., 1:1 (1998), 129–138 | MR | Zbl

[15] Shlepkin A.K., “O sopryazhenno biprimitivno konechnykh gruppakh s usloviem primarnoi minimalnosti”, Algebra i logika, 22 (1983), 226–231 | MR | Zbl

[16] Shlepkin A.K., Gruppy Shunkova s dopolnitelnymi ogranicheniyami, dis. ... d-ra fiz.-mat. nauk, Krasnoyarsk, 1998, 163 pp.

[17] Shlepkin A.K., “O periodicheskoi chasti nekotorykh grupp Shunkova”, Algebra i logika, 38 (1999), 96–125 | Zbl