On the periodic part of a Shunkov group saturated with linear and unitary groups of degree 3 over finite fields of odd characteristic
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 207-219
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G$ be a group, and let $\mathfrak{X}$ be a set of groups. A group $G$ is saturated with groups from the set $\mathfrak{X}$ if any finite subgroup of $G$ is contained in a subgroup of $G$ isomorphic to some group from $\mathfrak{X}$. If all elements of finite orders from $G$ are contained in a periodic subgroup $T(G)$ of $G$, then $T(G)$ is called the periodic part of $G$. A group $G$ is called a Shunkov group if, for any finite subgroup $H$ of $G$, in $G/N(G)$ any two conjugate elements of prime order generate a finite group. A Shunkov group may have no periodic part. It is proved that a Shunkov group saturated with finite linear and unitary groups of degree 3 over finite fields of characteristic 2 has a periodic part, which is isomorphic to either a linear or a unitary group of degree 3 over a suitable locally finite field of characteristic 2.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
groups with saturation conditions, Shunkov group, periodic part of a group.
                    
                  
                
                
                @article{TIMM_2021_27_1_a18,
     author = {A. A. Shlepkin},
     title = {On the periodic part of a {Shunkov} group saturated with linear and unitary groups of degree 3 over finite fields of odd characteristic},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {207--219},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a18/}
}
                      
                      
                    TY - JOUR AU - A. A. Shlepkin TI - On the periodic part of a Shunkov group saturated with linear and unitary groups of degree 3 over finite fields of odd characteristic JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 207 EP - 219 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a18/ LA - ru ID - TIMM_2021_27_1_a18 ER -
%0 Journal Article %A A. A. Shlepkin %T On the periodic part of a Shunkov group saturated with linear and unitary groups of degree 3 over finite fields of odd characteristic %J Trudy Instituta matematiki i mehaniki %D 2021 %P 207-219 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a18/ %G ru %F TIMM_2021_27_1_a18
A. A. Shlepkin. On the periodic part of a Shunkov group saturated with linear and unitary groups of degree 3 over finite fields of odd characteristic. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 207-219. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a18/
