Criteria for the existence of periodic and bounded solutions of three-dimensional systems of differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 157-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study necessary and sufficient conditions for the existence of periodic and bounded solutions for one class of three-dimensional systems of nonlinear ordinary differential equations. The main nonlinear positively homogeneous terms are distinguished in the systems under consideration. Criteria for the existence of periodic and bounded solutions are formulated in terms of the properties of main nonlinear terms. For the periodic problem, it is proved that the previously known sufficient condition for the existence of periodic solutions is also a necessary condition. In the question of the existence of bounded solutions, it is proved that under a homotopy of the main nonlinear terms, the property of the existence of bounded solutions is preserved. Based on this, a new criterion for the existence of bounded solutions is proved with the use of methods of the qualitative theory of differential equations and nonlinear analysis, including the method of guiding functions and the topological method of Vazhevsky. The obtained results can be further generalized for multidimensional systems of differential equations.
Keywords: three-dimensional system of nonlinear ordinary differential equations, periodic solution, bounded solution, method of guiding functions, rotation of a vector field, Vazhevsky topological method.
Mots-clés : homotopy relation
@article{TIMM_2021_27_1_a15,
     author = {\`E. M. Muhamadiev and A. N. Naimov},
     title = {Criteria for the existence of periodic and bounded solutions of three-dimensional systems of differential equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {157--172},
     year = {2021},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a15/}
}
TY  - JOUR
AU  - È. M. Muhamadiev
AU  - A. N. Naimov
TI  - Criteria for the existence of periodic and bounded solutions of three-dimensional systems of differential equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 157
EP  - 172
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a15/
LA  - ru
ID  - TIMM_2021_27_1_a15
ER  - 
%0 Journal Article
%A È. M. Muhamadiev
%A A. N. Naimov
%T Criteria for the existence of periodic and bounded solutions of three-dimensional systems of differential equations
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 157-172
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a15/
%G ru
%F TIMM_2021_27_1_a15
È. M. Muhamadiev; A. N. Naimov. Criteria for the existence of periodic and bounded solutions of three-dimensional systems of differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 157-172. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a15/

[1] Nemytskii V.V., Stepanov V.V., Kachestvennaya teoriya differentsialnykh uravnenii, OGIZ, M., 1947, 448 pp. | MR

[2] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp.

[3] Krasovskii N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatlit, M., 1959, 211 pp.

[4] Krasnoselskii M.A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966, 331 pp. | MR

[5] Krasnoselskii M.A., Zabreiko P.P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 512 pp.

[6] Mukhamadiev E., “O postroenii pravilnoi napravlyayuschei funktsii dlya sistemy differentsialnykh uravnenii”, Dokl. AN SSSR, 190:4 (1970), 777–779 | Zbl

[7] Mukhamadiev E., “Ogranichennye resheniya i gomotopicheskie invarianty sistem nelineinykh differentsialnykh uravnenii”, Dokl. AN, 351:5 (1996), 596–598 | MR | Zbl

[8] Mukhamadiev E., “Chislo Morsa napravlyayuschikh funktsii i rekurrentnye dvizheniya dinamicheskikh sistem”, Izvestiya RAEN. Ser. Seriya Matematika. Mat. modelirovanie. Informatika i upravlenie, 4:4 (2000), 37–66

[9] Perov A. I., Kaverina V. K., “Primenenie idei metoda napravlyayuschikh funktsii pri issledovanii neavtonomnoi sistemy obyknovennykh differentsialnykh uravnenii”, Vestn. Tambov. un-ta. Ser. Estest. i tekhn. nauki, 23:123 (2018), 510–516 | DOI

[10] Perov A. I., Kaverina V. K., “Ob odnoi zadache Vladimira Ivanovicha Zubova”, Differents. uravneniya, 55:2 (2019), 269–272 | DOI | Zbl

[11] Obukhovskii V., Kornev S., van Loi N., Zecca P., Method of guiding functions in problems of nonlinear analysis, Lecture Notes in Math., 2076, 2013, 173 pp. | DOI | MR | Zbl

[12] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 630 pp. | MR