Mots-clés : homotopy relation
@article{TIMM_2021_27_1_a15,
author = {\`E. M. Muhamadiev and A. N. Naimov},
title = {Criteria for the existence of periodic and bounded solutions of three-dimensional systems of differential equations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {157--172},
year = {2021},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a15/}
}
TY - JOUR AU - È. M. Muhamadiev AU - A. N. Naimov TI - Criteria for the existence of periodic and bounded solutions of three-dimensional systems of differential equations JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 157 EP - 172 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a15/ LA - ru ID - TIMM_2021_27_1_a15 ER -
%0 Journal Article %A È. M. Muhamadiev %A A. N. Naimov %T Criteria for the existence of periodic and bounded solutions of three-dimensional systems of differential equations %J Trudy Instituta matematiki i mehaniki %D 2021 %P 157-172 %V 27 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a15/ %G ru %F TIMM_2021_27_1_a15
È. M. Muhamadiev; A. N. Naimov. Criteria for the existence of periodic and bounded solutions of three-dimensional systems of differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 157-172. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a15/
[1] Nemytskii V.V., Stepanov V.V., Kachestvennaya teoriya differentsialnykh uravnenii, OGIZ, M., 1947, 448 pp. | MR
[2] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp.
[3] Krasovskii N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatlit, M., 1959, 211 pp.
[4] Krasnoselskii M.A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966, 331 pp. | MR
[5] Krasnoselskii M.A., Zabreiko P.P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 512 pp.
[6] Mukhamadiev E., “O postroenii pravilnoi napravlyayuschei funktsii dlya sistemy differentsialnykh uravnenii”, Dokl. AN SSSR, 190:4 (1970), 777–779 | Zbl
[7] Mukhamadiev E., “Ogranichennye resheniya i gomotopicheskie invarianty sistem nelineinykh differentsialnykh uravnenii”, Dokl. AN, 351:5 (1996), 596–598 | MR | Zbl
[8] Mukhamadiev E., “Chislo Morsa napravlyayuschikh funktsii i rekurrentnye dvizheniya dinamicheskikh sistem”, Izvestiya RAEN. Ser. Seriya Matematika. Mat. modelirovanie. Informatika i upravlenie, 4:4 (2000), 37–66
[9] Perov A. I., Kaverina V. K., “Primenenie idei metoda napravlyayuschikh funktsii pri issledovanii neavtonomnoi sistemy obyknovennykh differentsialnykh uravnenii”, Vestn. Tambov. un-ta. Ser. Estest. i tekhn. nauki, 23:123 (2018), 510–516 | DOI
[10] Perov A. I., Kaverina V. K., “Ob odnoi zadache Vladimira Ivanovicha Zubova”, Differents. uravneniya, 55:2 (2019), 269–272 | DOI | Zbl
[11] Obukhovskii V., Kornev S., van Loi N., Zecca P., Method of guiding functions in problems of nonlinear analysis, Lecture Notes in Math., 2076, 2013, 173 pp. | DOI | MR | Zbl
[12] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 630 pp. | MR