Mots-clés : graph automorphism.
@article{TIMM_2021_27_1_a14,
author = {A. A. Makhnev and D. V. Paduchikh},
title = {On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {146--156},
year = {2021},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a14/}
}
TY - JOUR
AU - A. A. Makhnev
AU - D. V. Paduchikh
TI - On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$
JO - Trudy Instituta matematiki i mehaniki
PY - 2021
SP - 146
EP - 156
VL - 27
IS - 1
UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a14/
LA - ru
ID - TIMM_2021_27_1_a14
ER -
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 146-156
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a14/
%G ru
%F TIMM_2021_27_1_a14
A. A. Makhnev; D. V. Paduchikh. On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 146-156. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a14/
[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; N Y, 1989, 495 pp. | MR | Zbl
[2] Jurisic A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65 (2012), 29–47 | DOI | MR | Zbl
[3] Nirova M.S., “Kody v distantsionno regulyarnykh grafakh s $\theta_2=-1$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:3 (2018), 155–163 | DOI | MR
[4] Makhnev A.A., Nirova M.S., “Distantsionno regulyarnye grafy s massivami peresechenii $\{15,8,4;1,2,12\}$, $\{27,16,4;1,2,24\}$ i $\{195,168,14;1,12,182\}$ ne suschestvuyut”, Teoriya grupp i ee prilozheniya, tez. dokl. XIII shk.-konf. po teorii grupp, 2020, 70 URL: http://group.imm.uran.ru
[5] Payne S.E., Thas J.A., Finite generalized quadrangles, Ser. Research Notes in Math., 110, Pitman, Boston, 1984, 312 pp. | MR | Zbl
[6] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnykh grafov s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. AN, 432:5 (2010), 512–515 | MR
[7] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl