On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 146-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

If a distance-regular graph $\Gamma$ of diameter 3 contains a maximal locally regular 1-code that is last subconstituent perfect, then $\Gamma$ has intersection array $\{a(p+1),cp,a+1;1,c,ap\}$ or $\{a(p+1),(a+1)p,c;1,c,ap\}$, where $a=a_3$, $c=c_2$, and $p=p^3_{33}$ (Jurišić, Vidali). In the first case, $\Gamma$ has eigenvalue $\theta_2=-1$ and the graph $\Gamma_3$ is pseudogeometric for $GQ(p+1,a)$. If $a=c+1$, then the graph $\bar\Gamma_2$ is pseudogeometric for $pG_2(p+1,2a)$. If in this case the pseudogeometric graph for the generalized quadrangle $GQ(p+1,a)$ has quasi-classical parameters, then $\Gamma$ has intersection array $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$ (Makhnev, Nirova). In this paper, we find possible automorphisms of a graph with intersection array $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$.
Keywords: distance-regular graph, generalized quadrangle
Mots-clés : graph automorphism.
@article{TIMM_2021_27_1_a14,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {146--156},
     year = {2021},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a14/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 146
EP  - 156
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a14/
LA  - ru
ID  - TIMM_2021_27_1_a14
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 146-156
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a14/
%G ru
%F TIMM_2021_27_1_a14
A. A. Makhnev; D. V. Paduchikh. On distance-regular graphs with intersection arrays $\{q^2-1,q(q-2),q+2;1,q,(q+1)(q-2)\}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 146-156. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a14/

[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; N Y, 1989, 495 pp. | MR | Zbl

[2] Jurisic A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65 (2012), 29–47 | DOI | MR | Zbl

[3] Nirova M.S., “Kody v distantsionno regulyarnykh grafakh s $\theta_2=-1$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:3 (2018), 155–163 | DOI | MR

[4] Makhnev A.A., Nirova M.S., “Distantsionno regulyarnye grafy s massivami peresechenii $\{15,8,4;1,2,12\}$, $\{27,16,4;1,2,24\}$ i $\{195,168,14;1,12,182\}$ ne suschestvuyut”, Teoriya grupp i ee prilozheniya, tez. dokl. XIII shk.-konf. po teorii grupp, 2020, 70 URL: http://group.imm.uran.ru

[5] Payne S.E., Thas J.A., Finite generalized quadrangles, Ser. Research Notes in Math., 110, Pitman, Boston, 1984, 312 pp. | MR | Zbl

[6] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnykh grafov s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. AN, 432:5 (2010), 512–515 | MR

[7] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl