Mots-clés : heuristic algorithm
@article{TIMM_2021_27_1_a12,
author = {P. D. Lebedev and A. L. Kazakov},
title = {Iterative algorithms for constructing the thinnest coverings of convex polyhedra by sets of different balls},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {116--129},
year = {2021},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a12/}
}
TY - JOUR AU - P. D. Lebedev AU - A. L. Kazakov TI - Iterative algorithms for constructing the thinnest coverings of convex polyhedra by sets of different balls JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 116 EP - 129 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a12/ LA - ru ID - TIMM_2021_27_1_a12 ER -
%0 Journal Article %A P. D. Lebedev %A A. L. Kazakov %T Iterative algorithms for constructing the thinnest coverings of convex polyhedra by sets of different balls %J Trudy Instituta matematiki i mehaniki %D 2021 %P 116-129 %V 27 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a12/ %G ru %F TIMM_2021_27_1_a12
P. D. Lebedev; A. L. Kazakov. Iterative algorithms for constructing the thinnest coverings of convex polyhedra by sets of different balls. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 116-129. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a12/
[1] Kepler I., O shestiugolnykh snezhinkakh, per. s latinskogo Yu. A. Danilova, Nauka, M., 1982, 192 pp.
[2] Preparata F.P., Shamos M.I., Computational geometry: An Introduction, Springer-Verlag, N Y, 1985, 396 pp. | MR
[3] Banhelyi B., Palatinus E., Levai B.L., “Optimal circle covering problems and their applications”, Central European J. Operations Research, 23:4 (2015), 815–832 | DOI | MR | Zbl
[4] Shirokanev A.S., Kirsh D.V., Ilyasova N.Yu., Kupriyanov A.V., “Issledovanie algoritmov rasstanovki koagulyatov na izobrazhenie glaznogo dna”, Kompyuternaya optika, 42:4 (2018), 712–721 | DOI
[5] Hayat H. et al, “The State-of-the-art of sensors and environmental monitoring technologies in buildings”, Sensors, 19:17 (2019), 3648, 31 pp. | DOI
[6] Bychkov I.V., Maksimkin N.N., Khozyainov I.S., Kiselev L.V., “O zadache patrulirovaniya granitsy akvatorii, okhranyaemoi gruppoi podvodnykh apparatov”, Tekhnicheskie problemy osvoeniya Mirovogo okeana, 5 (2013), 424–428
[7] Ershov A.A., Ushakov A.V., Ushakov V.N., “Zadacha o sblizhenii upravlyaemoi sistemy s kompaktom v fazovom prostranstve pri nalichii fazovykh ogranichenii”, Mat. sb., 210:8 (2019), 29–66 | DOI | MR | Zbl
[8] Ushakov V.N., Ukhobotov V.I., Lipin A.E., “Ob odnom dopolnenii k opredeleniyu stabilnogo mosta i approksimiruyuschei sistemy mnozhestv v differentsialnykh igrakh”, Tr. MIAN, 304 (2019), 285–297 | DOI | Zbl
[9] Toth L.F., Regular figures, A Pergamon Press Book The Macmillan Co., N Y, 1964, 339 pp. | MR | Zbl
[10] Toth L.F., “Solid circle-packings and circle-coverings”, Studia Sci. Math. Hungar., 3 (1968), 401–409 | MR | Zbl
[11] Toth F.G., “Covering the plane with two kinds of circles”, Discrete Computational Geometry, 13:3–4 (1995), 445–457 | DOI | MR | Zbl
[12] Florian A., Heppes A., “Solid Coverings of the Euclidean Plane with Incongruent Circles”, Discrete Computational Geometry, 23:2 (2000), 225–245 | DOI | MR | Zbl
[13] Dorninger D., “Thinnest covering of the Euclidean plane with incongruent circles”, Anal. Geom. Metr. Spaces, 5:1 (2017), 40–46 | DOI | MR | Zbl
[14] Banhelyi B., Palatinus E, Levai B.L., “Optimal circle covering problems and their applications”, Central European J. Operations Research, 23:4 (2015), 815–832 | DOI | MR | Zbl
[15] Takhonov I.I., “Multi-level regular coverings of the plane by disks”, J. Math. Sci., 211:6 (2015), 886–901 | DOI | MR
[16] Kiseleva E.M., Lozovskaya L.I., Timoshenko E.V., “Reshenie nepreryvnykh zadach optimalnogo pokrytiya sharami s ispolzovaniem teorii optimalnogo razbieniya mnozhestv”, Kibernetika i sistemnyi analiz, 2009, no. 3, 98–117 | Zbl
[17] Dumer I., “Covering spheres with spheres”, Discrete Computational Geometry, 38:4 (2006), 665–679 | DOI | MR
[18] Kazakov A.L., Lebedev P.D., “Algoritmy postroeniya optimalnykh upakovok dlya kompaktnykh mnozhestv na ploskosti”, Vych. metody i programmirovanie, 16:2 (2015), 307–317
[19] Lebedev P.D., Ushakov A.V., “Approksimatsiya mnozhestv na ploskosti optimalnymi naborami krugov”, Avtomatika i telemekhanika, 2012, no. 3, 79–90 | Zbl
[20] Kazakov A.L., Lebedev P.D., “Algoritmy postroeniya nailuchshikh n-setei v metricheskikh prostranstvakh”, Avtomatika i telemekhanika, 2017, no. 7, 141–155 | Zbl
[21] Kazakov A., Lebedev P., Lempert A., “On covering bounded sets by collections of circles of various radii”, The Bulletin of Irkutsk State University. Ser.: Mathematics, 31 (2020), 18–33 | DOI | MR | Zbl
[22] Pshenichnyi B.N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 320 pp. | MR
[23] Garkavi A.L., “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, Uspekhi mat. nauk, 19:6 (1964), 139–145 | MR | Zbl
[24] Shorikov A.F., “Algoritm resheniya zadachi aposteriornogo minimaksnogo otsenivaniya sostoyanii diskretnykh dinamicheskikh sistem. I”, Avtomatika i telemekhanika, 1996, no. 7, 130–143 | Zbl
[25] Shorikov A.F., “Algoritm resheniya zadachi aposteriornogo minimaksnogo otsenivaniya sostoyanii diskretnykh dinamicheskikh sistem. II”, Avtomatika i telemekhanika, 1996, no. 9, 139–150 | Zbl