On chief factors of parabolic maximal subgroups of the group $B_l(2^n)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 110-115

Voir la notice de l'article provenant de la source Math-Net.Ru

This study continues the author's previous papers, where a refined description of the chief factors of a parabolic maximal subgroup involved in its unipotent radical was obtained for all (normal and twisted) finite simple groups of Lie type except for the group $B_l(2^n)$. In present paper, such a description is given the group $B_l(2^n)$. For every parabolic maximal subgroup of $B_l(2^n)$, a fragment of its chief series involved in the unipotent radical of this parabolic subgroup is given. Generators of the corresponding chief factors are presented in a table.
Keywords: finite simple group, group of Lie type, parabolic maximal subgroup, chief factor, strong version of Sims conjecture.
Mots-clés : unipotent radical
@article{TIMM_2021_27_1_a11,
     author = {V. V. Korableva},
     title = {On chief factors of parabolic maximal subgroups of the group $B_l(2^n)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {110--115},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a11/}
}
TY  - JOUR
AU  - V. V. Korableva
TI  - On chief factors of parabolic maximal subgroups of the group $B_l(2^n)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 110
EP  - 115
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a11/
LA  - ru
ID  - TIMM_2021_27_1_a11
ER  - 
%0 Journal Article
%A V. V. Korableva
%T On chief factors of parabolic maximal subgroups of the group $B_l(2^n)$
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 110-115
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a11/
%G ru
%F TIMM_2021_27_1_a11
V. V. Korableva. On chief factors of parabolic maximal subgroups of the group $B_l(2^n)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 110-115. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a11/