Keywords: divided difference, quadratic splines.
@article{TIMM_2021_27_1_a1,
author = {Yu. S. Volkov},
title = {A remark on the connection between the second divided difference and the second derivative},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {19--21},
year = {2021},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a1/}
}
TY - JOUR AU - Yu. S. Volkov TI - A remark on the connection between the second divided difference and the second derivative JO - Trudy Instituta matematiki i mehaniki PY - 2021 SP - 19 EP - 21 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a1/ LA - ru ID - TIMM_2021_27_1_a1 ER -
Yu. S. Volkov. A remark on the connection between the second divided difference and the second derivative. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 19-21. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a1/
[1] Novikov S. I., Shevaldin V. T., “O svyazi mezhdu vtoroi razdelennoi raznostyu i vtoroi proizvodnoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:2 (2020), 216–224 | MR
[2] Subbotin Yu. N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN SSSR, 78 (1965), 24–42 | Zbl
[3] Schoenberg I.J., “Cardinal interpolation and spline functions”, J. Approx. Theory, 2:2 (1969), 167–206 | DOI | MR | Zbl
[4] Favard J., “Sur l'interpolation”, J. Math. Pures Appl., 19:3 (1940), 281–306 | MR
[5] de Boor C., “How small can one make the derivatives of an interpolating function?”, J. Approx. Theory, 13:2 (1975), 105–116 | DOI | MR | Zbl
[6] de Boor C., “A smooth and local interpolant with “small” k-th derivative”, Numerical solutions of boundary value problems for ordinary differential equations, Proc. Sympos., Univ. Maryland (Baltimore, Md., 1974), Academic Press, New York, 1975, 177–197 | MR
[7] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp.
[8] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, L., 1962, 708 pp. | MR
[9] de Boor C., “On the (bi)infinite case of Shadrin's theorem concerning the $L_\infty$-boundedness of the $L_2$-spline projector”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 24–29 | MR
[10] Volkov Yu. S., “Interpolyatsiya splainami chetnoi stepeni po Subbotinu i po Marsdenu”, Ukr. mat. zhurn., 66:7 (2014), 891–908 | Zbl