A remark on the connection between the second divided difference and the second derivative
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 19-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the recent paper of S.I. Novikov and V.T. Shevaldin, the problem of the relationship between the second divided difference and the second derivative has been considered. The problem is to find the smallest value (in the uniform norm) of the second derivative among the functions interpolating a sequence of values with bounded second divided differences on arbitrary grids. In their paper, two-sided estimates for the required quantity have been found. We note that a more exact upper bound is known; it is attainable, for example, on a uniform grid. This bound can be easily obtained using Subbotin's interpolation splines.
Mots-clés : Favard problem, interpolation
Keywords: divided difference, quadratic splines.
@article{TIMM_2021_27_1_a1,
     author = {Yu. S. Volkov},
     title = {A remark on the connection between the second divided difference and the second derivative},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {19--21},
     year = {2021},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a1/}
}
TY  - JOUR
AU  - Yu. S. Volkov
TI  - A remark on the connection between the second divided difference and the second derivative
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2021
SP  - 19
EP  - 21
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a1/
LA  - ru
ID  - TIMM_2021_27_1_a1
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%T A remark on the connection between the second divided difference and the second derivative
%J Trudy Instituta matematiki i mehaniki
%D 2021
%P 19-21
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a1/
%G ru
%F TIMM_2021_27_1_a1
Yu. S. Volkov. A remark on the connection between the second divided difference and the second derivative. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 19-21. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a1/

[1] Novikov S. I., Shevaldin V. T., “O svyazi mezhdu vtoroi razdelennoi raznostyu i vtoroi proizvodnoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 26:2 (2020), 216–224 | MR

[2] Subbotin Yu. N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN SSSR, 78 (1965), 24–42 | Zbl

[3] Schoenberg I.J., “Cardinal interpolation and spline functions”, J. Approx. Theory, 2:2 (1969), 167–206 | DOI | MR | Zbl

[4] Favard J., “Sur l'interpolation”, J. Math. Pures Appl., 19:3 (1940), 281–306 | MR

[5] de Boor C., “How small can one make the derivatives of an interpolating function?”, J. Approx. Theory, 13:2 (1975), 105–116 | DOI | MR | Zbl

[6] de Boor C., “A smooth and local interpolant with “small” k-th derivative”, Numerical solutions of boundary value problems for ordinary differential equations, Proc. Sympos., Univ. Maryland (Baltimore, Md., 1974), Academic Press, New York, 1975, 177–197 | MR

[7] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp.

[8] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, L., 1962, 708 pp. | MR

[9] de Boor C., “On the (bi)infinite case of Shadrin's theorem concerning the $L_\infty$-boundedness of the $L_2$-spline projector”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 24–29 | MR

[10] Volkov Yu. S., “Interpolyatsiya splainami chetnoi stepeni po Subbotinu i po Marsdenu”, Ukr. mat. zhurn., 66:7 (2014), 891–908 | Zbl