Mots-clés : $4M$-group.
@article{TIMM_2021_27_1_a0,
author = {V. A. Belonogov},
title = {Finite groups with four conjugacy classes of maximal subgroups. {III}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {5--18},
year = {2021},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a0/}
}
V. A. Belonogov. Finite groups with four conjugacy classes of maximal subgroups. III. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 27 (2021) no. 1, pp. 5-18. http://geodesic.mathdoc.fr/item/TIMM_2021_27_1_a0/
[1] Belonogov V.A., “Konechnye gruppy s chetyrmya klassami maksimalnykh podgrupp. I”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23:4 (2017), 52–62 | DOI | MR
[2] Belonogov V.A., “Konechnye gruppy s chetyrmya klassami maksimalnykh podgrupp. II”, Sib. elektron. mat. izv., 15 (2018), 86–91 | DOI | Zbl
[3] Belonogov V.A., “Konechnye gruppy s chetyrmya klassami maksimalnykh podgrupp”, Teoriya grupp i ee prilozheniya, materialy XII shk.-konf. po teorii grupp, posvyaschen. 65-letiyu A. A. Makhneva, Kubanskii gos. un-t, Krasnodar, 2018, 7–13
[4] Pazderski G., “Uber maximal Untergruppen endlicher Gruppen”, Math. Nachr., 26:6 (1964), 307–319 | MR | Zbl
[5] Belonogov V.A., “Konechnye gruppy s tremya klassami maksimalnykh podgrupp”, Mat. sb., 131:2 (1986), 225–239 | Zbl
[6] Belonogov V.A., “On finite almost simple groups with exactly four conjugate classes of maximal subgroups”, Tez. Mezhdunar. konf. “Maltsevskie chteniya” (Malcev Meeting), 2019, 142
[7] Conway J.H., Curtis R.T., Norten S.P., Parker R.A., Wilson R.A., Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl
[8] Gorenstein D., Finite groups, Harper Row, N Y, 1968, 642 pp. | MR | Zbl
[9] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups, Math. Surveys and Monographs, 40, no. 1, AMS, Providence, 1994, 165 pp. | DOI | MR | Zbl
[10] Wilson R.A., The finite simple groups, Springer, London, 2009, 313 pp. | MR | Zbl
[11] Liebeck M.W., Praeger C.E., Saxl J., “The classification of the maximal subgroups of the finite alternating and symmetric groups”, J. Algebra, 111:2 (1987), 365–383 | DOI | MR | Zbl
[12] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lecture Note, 407, Cambridge Univ. Press, Cambridge, 2013, 438 pp. | MR | Zbl
[13] Huppert B., Endliche Gruppen, v. 1, Springer, Berlin, 1967, 793 pp. | DOI | MR | Zbl
[14] Dickson L.E., Linear groups with an exposition of the Galois field theory, Dover reprint 1958, Teubner, Leipzig, 1901 | DOI | MR | Zbl
[15] King O., “The subgroup structure of finite classical groups in terms of geometric configurations”, Surveys in Combinatorics, British Combinatorial Conf. - BC, 2005, London Math. Soc. Lecture Note Ser., 327, ed. B.S. Webb, Cambridge Univ. Press, Cambridge, 2005, 29–56 | DOI | MR | Zbl
[16] Giudici M., The maximal subgroups of almost simple groups with socle $PSL(2,q)$, [e-resource], 2007, 11 pp., arXiv: math.0703685v1
[17] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, London Math. Soc. Lecture Note Ser., 129, Cambridge Univ. Press, Cambridge, 1990, 304 pp. | MR | Zbl
[18] Carter R.W., Simple groups of Lie type, John Willey and Sons, London, 1972, 331 pp. | MR | Zbl
[19] Liebeck M.W., Saxl J., Seitz G.M., “Subgroups of maximal rank in finite exeptional groups of Lie type”, Proc. London Math. Soc. (3), 65:2 (1992) | DOI | MR | Zbl
[20] Malle G., “The maximal subgroups of $^2F_4(q^2)$”, J. Algebra, 139 (1991), 52–69 | DOI | MR | Zbl