Minimax Solutions of Homogeneous Hamilton–Jacobi Equations with Fractional-Order Coinvariant Derivatives
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 106-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Cauchy problem is considered for a homogeneous Hamilton–Jacobi equation with fractional-order coinvariant derivatives, which arises in problems of dynamic optimization of systems described by differential equations with Caputo fractional derivatives. A generalized solution of the problem in the minimax sense is defined. It is proved that such a solution exists, is unique, depends continuously on the parameters of the problem, and is consistent with the classical solution. An infinitesimal criterion of the minimax solution is obtained in the form of a pair of differential inequalities for suitable directional derivatives. An illustrative example is given.
Keywords: Hamilton–Jacobi equations, generalized solutions, coinvariant derivatives, fractional derivatives.
@article{TIMM_2020_26_4_a7,
     author = {M. I. Gomoyunov},
     title = {Minimax {Solutions} of {Homogeneous} {Hamilton{\textendash}Jacobi} {Equations} with {Fractional-Order} {Coinvariant} {Derivatives}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {106--125},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a7/}
}
TY  - JOUR
AU  - M. I. Gomoyunov
TI  - Minimax Solutions of Homogeneous Hamilton–Jacobi Equations with Fractional-Order Coinvariant Derivatives
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 106
EP  - 125
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a7/
LA  - ru
ID  - TIMM_2020_26_4_a7
ER  - 
%0 Journal Article
%A M. I. Gomoyunov
%T Minimax Solutions of Homogeneous Hamilton–Jacobi Equations with Fractional-Order Coinvariant Derivatives
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 106-125
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a7/
%G ru
%F TIMM_2020_26_4_a7
M. I. Gomoyunov. Minimax Solutions of Homogeneous Hamilton–Jacobi Equations with Fractional-Order Coinvariant Derivatives. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 106-125. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a7/

[1] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona - Yakobi, Nauka, M., 1991, 216 pp.

[2] Subbotin A.I., Generalized solutions of first order PDEs: The dynamical optimization perspective, Birkhauser, Basel, 1995, 314 pp. | DOI

[3] Lukoyanov N.Yu., Funktsionalnye uravneniya Gamiltona - Yakobi i zadachi upravleniya s nasledstvennoi informatsiei, Izd-vo Ural. federal. un-ta, Ekaterinburg, 2011, 243 pp.

[4] Bayraktar E., Keller C., “Path-dependent Hamilton-Jacobi equations in infinite dimensions”, J. Funct. Anal., 275:8 (2018), 2096–2161 | DOI

[5] Plaksin A.R., “O minimaksnom reshenii funktsionalnykh uravnenii Gamiltona - Yakobi dlya sistem neitralnogo tipa”, Differents. uravneniya, 55:11 (2019), 1519–1527 | DOI

[6] Gomoyunov M.I., “Dynamic programming principle and Hamilton-Jacobi-Bellman equations for fractional-order systems”, SIAM J. Control Optim., 58:6 (2020), 3185–3211 | DOI

[7] Gomoyunov M.I., “Ob uravnenii Gamiltona - Yakobi dlya differentsialnykh igr v sistemakh s drobnymi proizvodnymi Kaputo”, Mezhdunar. konf. “Ustoichivost, upravlenie, differentsialnye igry (SCDG2019)”, posvyaschen. 95-letiyu so dnya rozhdeniya akad. N.N. Krasovskogo (Ekaterinburg, 16-20 sentyabrya 2019 g.), materialy, 95–99

[8] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[9] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier, N Y, 2006, 540 pp.

[10] Diethelm K., The analysis of fractional differential equations, Springer, Berlin, 2010, 247 pp. | DOI

[11] Lukoyanov N.Yu., Plaksin A.R., “Stabilnye funktsionaly dinamicheskikh sistem neitralnogo tipa”, Tr. MIAN, 304 (2019), 221–234 | DOI

[12] Gomoyunov M.I., “K teorii differentsialnykh vklyuchenii s drobnymi proizvodnymi Kaputo”, Differents. uravneniya, 56:11 (2020), 1419–1432 | DOI

[13] Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V., Mittag-Leffler functions, related topics and applications, Springer, Berlin, 2014, 443 pp. | DOI

[14] Kim A.V., Functional differential equations. Application of i-smooth calculus, Kluwer, Dordrecht, 1999, 165 pp.

[15] Zorich V.A., Matematicheskii analiz, Uchebnik, v. II, Nauka, M., 1984, 640 pp.

[16] Gomoyunov M.I., “Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems”, Frac. Calc. Appl. Anal., 21:5 (2018), 1238–1261 | DOI

[17] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 225 pp.

[18] Arutyunov A.V., Lektsii po vypuklomu i mnogoznachnomu analizu, Fizmatlit, M., 2014, 184 pp.