Voir la notice du chapitre de livre
Mots-clés : $Q$-polynomial graph.
@article{TIMM_2020_26_4_a6,
author = {M. P. Golubyatnikov},
title = {Distance-regular graphs with intersection arrays $\{104,70,25;1,7,80\}$ and $\{272,210,49;1,15,224\}$ do not exist},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {98--105},
year = {2020},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a6/}
}
TY - JOUR
AU - M. P. Golubyatnikov
TI - Distance-regular graphs with intersection arrays $\{104,70,25;1,7,80\}$ and $\{272,210,49;1,15,224\}$ do not exist
JO - Trudy Instituta matematiki i mehaniki
PY - 2020
SP - 98
EP - 105
VL - 26
IS - 4
UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a6/
LA - ru
ID - TIMM_2020_26_4_a6
ER -
%0 Journal Article
%A M. P. Golubyatnikov
%T Distance-regular graphs with intersection arrays $\{104,70,25;1,7,80\}$ and $\{272,210,49;1,15,224\}$ do not exist
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 98-105
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a6/
%G ru
%F TIMM_2020_26_4_a6
M. P. Golubyatnikov. Distance-regular graphs with intersection arrays $\{104,70,25;1,7,80\}$ and $\{272,210,49;1,15,224\}$ do not exist. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 98-105. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a6/
[1] Belousov I.N., Makhnev A.A., Nirova M.S., “O distantsionno regulyarnykh $Q$-polinomialnykh grafakh $\Gamma$ s silno regulyarnymi grafami $\Gamma_2$ i $\Gamma_3$”, Sib. elektron. mat. izv., 16 (2019), 1358–1365 | DOI
[2] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; N Y, 1989, 495 pp.
[3] Coolsaet K., Jurishich A., “Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs”, J. Comb. Theory. Ser. A, 115 (2008), 1086–1095 | DOI
[4] Gavrilyuk A. L., Koolen J. H., “The Terwilliger polynomial of a $Q$-polynomial distance-regular graph and its application to the pseudo-partition graphs”, Linear Algebra Appl., 466 (2015), 117–140