Distance-regular graphs with intersection arrays $\{104,70,25;1,7,80\}$ and $\{272,210,49;1,15,224\}$ do not exist
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 98-105
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

I. N. Belousov, A. A. Makhnev, and M. S. Nirova in 2019 described $Q$-polynomial distance-regular graphs $\Gamma$ of diameter 3 with strongly regular graphs $\Gamma_2$ and $\Gamma_3$, where the graphs $\Gamma_2$ and $\Gamma_3$ have the same vertices as $\Gamma$ and these vertices are adjacent if and only if they are at distance 2 and 3 in $\Gamma$, respectively. Some of the $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$ have intersection arrays $$\left\lbrace \frac{(s^2+su-1)(u^2-1)}{s^2-1},\frac{(u^2-s^2)su}{s^2-1},u^2;1,\frac{u^2-s^2}{s^2-1},\frac{su^3-su}{s^2-1}\right\rbrace.$$ For small values of $s$ and $u$, we have intersection arrays $\{104,70,25;1,7,80\}$ ($u=5$, $s=2$) and $\{272,210,49;1,15,224\}$ ($u=7$, $s=2$). We prove that distance-regular graphs with such arrays do not exist. We also study the properties of a local subgraph in a hypothetical distance-regular graph with intersection array $\{399, 320, 64; 1, 20, 336\}$ ($u=8$, $s=2$).
Keywords: distance-regular graph
Mots-clés : $Q$-polynomial graph.
@article{TIMM_2020_26_4_a6,
     author = {M. P. Golubyatnikov},
     title = {Distance-regular graphs with intersection arrays $\{104,70,25;1,7,80\}$ and $\{272,210,49;1,15,224\}$ do not exist},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--105},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a6/}
}
TY  - JOUR
AU  - M. P. Golubyatnikov
TI  - Distance-regular graphs with intersection arrays $\{104,70,25;1,7,80\}$ and $\{272,210,49;1,15,224\}$ do not exist
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 98
EP  - 105
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a6/
LA  - ru
ID  - TIMM_2020_26_4_a6
ER  - 
%0 Journal Article
%A M. P. Golubyatnikov
%T Distance-regular graphs with intersection arrays $\{104,70,25;1,7,80\}$ and $\{272,210,49;1,15,224\}$ do not exist
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 98-105
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a6/
%G ru
%F TIMM_2020_26_4_a6
M. P. Golubyatnikov. Distance-regular graphs with intersection arrays $\{104,70,25;1,7,80\}$ and $\{272,210,49;1,15,224\}$ do not exist. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 98-105. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a6/

[1] Belousov I.N., Makhnev A.A., Nirova M.S., “O distantsionno regulyarnykh $Q$-polinomialnykh grafakh $\Gamma$ s silno regulyarnymi grafami $\Gamma_2$ i $\Gamma_3$”, Sib. elektron. mat. izv., 16 (2019), 1358–1365 | DOI

[2] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; N Y, 1989, 495 pp.

[3] Coolsaet K., Jurishich A., “Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs”, J. Comb. Theory. Ser. A, 115 (2008), 1086–1095 | DOI

[4] Gavrilyuk A. L., Koolen J. H., “The Terwilliger polynomial of a $Q$-polynomial distance-regular graph and its application to the pseudo-partition graphs”, Linear Algebra Appl., 466 (2015), 117–140