Euler polynomials in the problem of extremal functional interpolation in the mean
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 83-97
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of extremal functional interpolation in the mean, first studied by Yu. N. Subbotin, is considered. Representations of the extremal functions solving this problem in terms of Euler polynomials are found, and their properties are studied. This made it possible to calculate the values of the extremal interpolation constants in terms of easily computable values of the Euler polynomials at certain points and sometimes Favard constants. The compatibility of the constants of extremal functional interpolation in the mean as the value of the averaging interval tends to zero with the constants of extremal functional interpolation is demonstrated.
Mots-clés :
Euler polynomials, Favard constants
Keywords: interpolation in the mean.
Keywords: interpolation in the mean.
@article{TIMM_2020_26_4_a5,
author = {Yu. S. Volkov},
title = {Euler polynomials in the problem of extremal functional interpolation in the mean},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {83--97},
publisher = {mathdoc},
volume = {26},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a5/}
}
TY - JOUR AU - Yu. S. Volkov TI - Euler polynomials in the problem of extremal functional interpolation in the mean JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 83 EP - 97 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a5/ LA - ru ID - TIMM_2020_26_4_a5 ER -
Yu. S. Volkov. Euler polynomials in the problem of extremal functional interpolation in the mean. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 83-97. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a5/