Euler polynomials in the problem of extremal functional interpolation in the mean
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 83-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of extremal functional interpolation in the mean, first studied by Yu. N. Subbotin, is considered. Representations of the extremal functions solving this problem in terms of Euler polynomials are found, and their properties are studied. This made it possible to calculate the values of the extremal interpolation constants in terms of easily computable values of the Euler polynomials at certain points and sometimes Favard constants. The compatibility of the constants of extremal functional interpolation in the mean as the value of the averaging interval tends to zero with the constants of extremal functional interpolation is demonstrated.
Mots-clés : Euler polynomials, Favard constants
Keywords: interpolation in the mean.
@article{TIMM_2020_26_4_a5,
     author = {Yu. S. Volkov},
     title = {Euler polynomials in the problem of extremal functional interpolation in the mean},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {83--97},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a5/}
}
TY  - JOUR
AU  - Yu. S. Volkov
TI  - Euler polynomials in the problem of extremal functional interpolation in the mean
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 83
EP  - 97
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a5/
LA  - ru
ID  - TIMM_2020_26_4_a5
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%T Euler polynomials in the problem of extremal functional interpolation in the mean
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 83-97
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a5/
%G ru
%F TIMM_2020_26_4_a5
Yu. S. Volkov. Euler polynomials in the problem of extremal functional interpolation in the mean. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 83-97. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a5/

[1] Subbotin Yu.N., “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Tr. MIAN SSSR, 138 (1975), 118–173

[2] Subbotin Yu.N., “Ekstremalnaya funktsionalnaya interpolyatsiya v srednem s naimenshim znacheniem n-i proizvodnoi pri bolshikh intervalakh usredneniya”, Mat. zametki, 59:1 (1996), 114–132

[3] Subbotin Yu.N., “Ekstremalnaya v $L_p$ interpolyatsiya v srednem pri peresekayuschikhsya intervalakh usredneniya”, Izv. RAN. Ser. matematicheskaya, 61:1 (1997), 177–198

[4] Subbotin Yu.N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN SSSR, 78 (1965), 24–42

[5] Subbotin Yu.N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei n-i proizvodnoi”, Tr. MIAN SSSR, 88 (1967), 30–60

[6] Shevaldin V.T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem”, Dokl. AN SSSR, 267:4 (1982), 803–805

[7] Shevaldin V.T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN SSSR, 164 (1983), 203–240

[8] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. Abramovits M., Stigan I., Nauka, M., 1979, 832 pp.

[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965, 296 pp.

[10] Dilcher K., “Bernoulli and Euler polynomials”, NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington, 2010, 587–599 URL: https://dlmf.nist.gov/24

[11] Korneichuk N.P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987, 424 pp.

[12] Volkov Yu.S., Subbotin Yu.N., “50 let zadache Shenberga o skhodimosti splain-interpolyatsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 52–67

[13] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integraly i ryady, v. 1, Elementarnye funktsii, Fizmatlit, M., 2002, 632 pp.

[14] Volkov Yu.S., “Ob odnoi zadache ekstremalnoi funktsionalnoi interpolyatsii i konstantakh Favara”, Dokl. AN. Matematika, informatika, protsessy upravleniya, 495 (2020), 29–32 | DOI

[15] Volkov Yu.S., “Efficient computation of Favard constants and their connection to Euler polynomials and numbers”, Siberian Electronic Math. Reports, 17 (2020), 1921–1942

[16] Schoenberg I.J., “Cardinal interpolation and spline functions”, J. Approx. Theory, 2:2 (1969), 167–206