Keywords: interpolation in the mean.
@article{TIMM_2020_26_4_a5,
author = {Yu. S. Volkov},
title = {Euler polynomials in the problem of extremal functional interpolation in the mean},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {83--97},
year = {2020},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a5/}
}
Yu. S. Volkov. Euler polynomials in the problem of extremal functional interpolation in the mean. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 83-97. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a5/
[1] Subbotin Yu.N., “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Tr. MIAN SSSR, 138 (1975), 118–173
[2] Subbotin Yu.N., “Ekstremalnaya funktsionalnaya interpolyatsiya v srednem s naimenshim znacheniem n-i proizvodnoi pri bolshikh intervalakh usredneniya”, Mat. zametki, 59:1 (1996), 114–132
[3] Subbotin Yu.N., “Ekstremalnaya v $L_p$ interpolyatsiya v srednem pri peresekayuschikhsya intervalakh usredneniya”, Izv. RAN. Ser. matematicheskaya, 61:1 (1997), 177–198
[4] Subbotin Yu.N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN SSSR, 78 (1965), 24–42
[5] Subbotin Yu.N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei n-i proizvodnoi”, Tr. MIAN SSSR, 88 (1967), 30–60
[6] Shevaldin V.T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem”, Dokl. AN SSSR, 267:4 (1982), 803–805
[7] Shevaldin V.T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN SSSR, 164 (1983), 203–240
[8] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. Abramovits M., Stigan I., Nauka, M., 1979, 832 pp.
[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965, 296 pp.
[10] Dilcher K., “Bernoulli and Euler polynomials”, NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington, 2010, 587–599 URL: https://dlmf.nist.gov/24
[11] Korneichuk N.P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987, 424 pp.
[12] Volkov Yu.S., Subbotin Yu.N., “50 let zadache Shenberga o skhodimosti splain-interpolyatsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 52–67
[13] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integraly i ryady, v. 1, Elementarnye funktsii, Fizmatlit, M., 2002, 632 pp.
[14] Volkov Yu.S., “Ob odnoi zadache ekstremalnoi funktsionalnoi interpolyatsii i konstantakh Favara”, Dokl. AN. Matematika, informatika, protsessy upravleniya, 495 (2020), 29–32 | DOI
[15] Volkov Yu.S., “Efficient computation of Favard constants and their connection to Euler polynomials and numbers”, Siberian Electronic Math. Reports, 17 (2020), 1921–1942
[16] Schoenberg I.J., “Cardinal interpolation and spline functions”, J. Approx. Theory, 2:2 (1969), 167–206