An object moving in $\mathbb R^2$ with a high-speed destructive miniobject and an unfriendly solid observer
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 76-82
Cet article a éte moissonné depuis la source Math-Net.Ru
We propose a model for the motion in a given corridor $Y\subset \mathbb{R}^2$ of an object $t$ equipped with a high-speed destructive miniobject in the presence of a solid unfriendly observer $f$. In $\mathbb{R}^2\backslash Y$ there is a subset $G$ that obstructs visibility and motion. For safety reasons, the observer sticks to neighborhoods of the angles and convex fragments of the boundary of $G$. The trajectory of $t$ is a curve $\mathcal{T}\subset Y$ with a given speed regime $v_t$ of the motion along it. The possibilities for the observer to track the object in a safe mode and for the object to avoid the observation depend on the positions of the observer and the object. We characterize the positions in which, for any $\mathcal{T}$, the object can choose a regime $v_t$ enabling the avoidance of observation and the positions guaranteeing that the observer can see a part of the trajectory.
Mots-clés :
navigation, observer
Keywords: trajectory, moving object.
Keywords: trajectory, moving object.
@article{TIMM_2020_26_4_a4,
author = {V. I. Berdyshev},
title = {An object moving in $\mathbb R^2$ with a high-speed destructive miniobject and an unfriendly solid observer},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {76--82},
year = {2020},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a4/}
}
TY - JOUR AU - V. I. Berdyshev TI - An object moving in $\mathbb R^2$ with a high-speed destructive miniobject and an unfriendly solid observer JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 76 EP - 82 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a4/ LA - ru ID - TIMM_2020_26_4_a4 ER -
V. I. Berdyshev. An object moving in $\mathbb R^2$ with a high-speed destructive miniobject and an unfriendly solid observer. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 76-82. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a4/
[1] Berdyshev V.I., “Nablyudateli i dvizhuschiisya ob'ekt v $R^3$”, Dokl. AN, 476:5 (2017), 506–508 | DOI
[2] Berdyshev V.I., “Klass traektorii $\mathbb R^3$, naibolee udalennykh ot nablyudatelei”, Dokl. AN, 483:1 (2018), 22–24 | DOI
[3] Popov A.A., Kostousov V.B., Berdyshev V.I., “Traektoriya ob'ekta, naibolee udalennaya ot nablyudatelei”, Proc. of the 48th Internat. Youth School-Conf. “Modern Problems in Mathematics and its Applications” (Yekaterinburg, Russia, February 5 - February 11, 2017), CEUR Workshop Proceedings, 1894, 2017, 129–136 URL: http://ceur-ws.org/Vol-1894