Approximation of a guaranteed estimation problem with mixed constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 48-63
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Questions of finite-dimensional approximation for a guaranteed estimation problem are considered for linear nonstationary systems with disturbances subject to mixed integral and geometric constraints, where the geometric constraints are not assumed to be compact. The parameters of the system and the measurement equation are formed in such a way that the state vector of the system is not subject to geometric constraints. Under these assumptions, one can reduce the estimation problem to an optimal control problem without state constraints and use Pontryagin's maximum principle. A discrete multistep system is proposed for which the information set converges in the Hausdorff metric to the corresponding information set of a continuous system as the partition step of the observation interval vanishes. Estimates characterizing the convergence rate are derived and an example is given.
Keywords: guaranteed estimation, filtering, variational inequalities, normal cone, maximum principle
Mots-clés : information set.
@article{TIMM_2020_26_4_a2,
     author = {B. I. Anan'ev and P. A. Yurovskikh},
     title = {Approximation of a guaranteed estimation problem with mixed constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {48--63},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a2/}
}
TY  - JOUR
AU  - B. I. Anan'ev
AU  - P. A. Yurovskikh
TI  - Approximation of a guaranteed estimation problem with mixed constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 48
EP  - 63
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a2/
LA  - ru
ID  - TIMM_2020_26_4_a2
ER  - 
%0 Journal Article
%A B. I. Anan'ev
%A P. A. Yurovskikh
%T Approximation of a guaranteed estimation problem with mixed constraints
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 48-63
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a2/
%G ru
%F TIMM_2020_26_4_a2
B. I. Anan'ev; P. A. Yurovskikh. Approximation of a guaranteed estimation problem with mixed constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 48-63. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a2/

[1] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 306 pp.

[2] Bertsecas D. P., Rhodes I. B., “Recursive state estimation for a set-memberschip description of uncertainty”, IEEE Trans. on Auto. Control, AC-16:2 (1971), 117–128 | DOI

[3] Schweppe F. C., Uncertain dynamic systems, Prentice Hall, N Y, 1973, 563 pp.

[4] Schmitendorf W. E., “Minimax control of systems with uncertainty in the initial state and in the state equations”, IEEE Trans. on Auto. Control, AC-22:3 (1971), 439–443 | DOI

[5] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov, Nauka, M., 1988, 319 pp.

[6] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1996, 321 pp.

[7] Kurzhanski A. B., Varaiya P., Dynamics and control of trajectory tubes: Theory and computation, SCFA, Birkhauser, 2014, 445 pp.

[8] Ananyev B. I., Yurovskih P. A., “On the approximation of estimation problems for controlled systems”, AIP Conf. Proc., 2164:1 (2019), 110001, 1–9 | DOI

[9] Ananev B. I., “Minimaksnaya kvadratichnaya zadacha korrektsii dvizheniya”, Prikladnaya matematika i mekhanika, 41:3 (1977), 436–445

[10] Ananev B. I., “Zadacha korrektsii dvizheniya s gaussovskim kanalom svyazi”, Avtomatika i telemekhanika, 2011, no. 2, 25–40

[11] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 552 pp.

[12] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp.

[13] Dontchev A., Rockafellar T., Implicit functions and solution mappings. A view from variational analysis, Springer, N Y, 2014, 466 pp.

[14] Propoi A. I., Elementy teorii optimalnykh diskretnykh protsessov, Nauka, M., 1973, 256 pp.