Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 268-278

Voir la notice de l'article provenant de la source Math-Net.Ru

In space $L_{2,\rho}$ of bivariate functions summable with square on set $Q=[-1,1]^2$ with weight $\rho(x,y)={1}/{\sqrt{(1-x^{2})(1-y^{2})}}$ the sharp inequalities of Jackson–Stechkin type in which the best polynomial approximation estimated above by Peetre $\mathcal{K}$-functional were obtained. We also find the exact values of various widths of classes of functions defined by generalized modulus of continuity and $\mathcal{K}$-functionals. Also the exact upper bounds for modules of coefficients of Fourier — Tchebychev on considered classes of functions were calculated.
Keywords: mean-squared approximation, generalized modulus of continuity, Fourier — Tchebychev double series, translated operator.
@article{TIMM_2020_26_4_a18,
     author = {M. Sh. Shabozov and {\CYRO}. {\CYRA}. Jurakhonov},
     title = {Upper estimates for best mean-square approximations for some classes of bivariate functions by {Fourier-Chebyshev} sums},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {268--278},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - О. А. Jurakhonov
TI  - Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 268
EP  - 278
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/
LA  - ru
ID  - TIMM_2020_26_4_a18
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A О. А. Jurakhonov
%T Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 268-278
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/
%G ru
%F TIMM_2020_26_4_a18
M. Sh. Shabozov; О. А. Jurakhonov. Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 268-278. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/