Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 268-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In space $L_{2,\rho}$ of bivariate functions summable with square on set $Q=[-1,1]^2$ with weight $\rho(x,y)={1}/{\sqrt{(1-x^{2})(1-y^{2})}}$ the sharp inequalities of Jackson–Stechkin type in which the best polynomial approximation estimated above by Peetre $\mathcal{K}$-functional were obtained. We also find the exact values of various widths of classes of functions defined by generalized modulus of continuity and $\mathcal{K}$-functionals. Also the exact upper bounds for modules of coefficients of Fourier — Tchebychev on considered classes of functions were calculated.
Keywords: mean-squared approximation, generalized modulus of continuity, Fourier — Tchebychev double series, translated operator.
@article{TIMM_2020_26_4_a18,
     author = {M. Sh. Shabozov and {\CYRO}. {\CYRA}. Jurakhonov},
     title = {Upper estimates for best mean-square approximations for some classes of bivariate functions by {Fourier-Chebyshev} sums},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {268--278},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - О. А. Jurakhonov
TI  - Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 268
EP  - 278
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/
LA  - ru
ID  - TIMM_2020_26_4_a18
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A О. А. Jurakhonov
%T Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 268-278
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/
%G ru
%F TIMM_2020_26_4_a18
M. Sh. Shabozov; О. А. Jurakhonov. Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 268-278. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/

[1] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Fizmatgiz, M., 1983, 384 pp.

[2] Vasilev N.I., Klokov Yu.A., Shkerstena A.Ya., Primenenie polinomov Chebysheva v chislennom analize, Zinatne, Riga, 1984, 240 pp.

[3] Beerends R.I., “Chebyshev polynomials in several variables and the radial part of the Laplace-Beltrami operator”, Trans. Amer. Math. Sec., 328:2 (1991), 1951–1961 | DOI

[4] Lidl R., “Tschebyscheff polynome in mehreren Variablen”, J. reine und angew. Math., 273 (1975), 178–198 | DOI

[5] Ricci P.E., “I polynomi di Tchbycheff in piu variabli”, Rend. Math. Appl., 11:2 (1978), 295–327

[6] Suetin P.K., Ortogonalnye mnogochleny po dvum peremennym, Nauka, M., 1988, 384 pp.

[7] Abilov V.A., Kerimov M.K., “Ob otsenkakh ostatochnykh chlenov kratnykh ryadov Fure - Chebysheva i kubaturnykh formul Chebyshevskogo tipa”, Zhurn. vychislit. matematiki i mat. fiziki, 43:5 (2003), 643–663

[8] Dzhurakhonov O. A., “Priblizhenie funktsii dvukh peremennykh “krugovymi” summami Fure - Chebysheva v $L_{2,\rho}$”, Vladikavkaz. mat. zhurn., 22:2 (2020), 5–17

[9] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teorii vlozheniya, Nauka, M., 1977, 456 pp.

[10] Vakarchuk S.B., Shvachko A.V., “O nailuchshei approksimatsii v srednem a algebraicheskimi polinomami s vesom i tochnykh znacheniyakh poperechnikov klassov funktsii”, Ukr. mat. zhurn., 65:12 (2013), 1604–1621

[11] Vakarchuk S.B., “Priblizhenie funktsii v srednem na veschestvennoi osi algebraicheskimi polinomami s vesom Chebysheva - Ermita i poperechniki funktsionalnykh klassov”, Mat. zametki, 95:5 (2014), 666–684

[12] Pinkus A., n-Widths in approximation theory, Springer-Verlag, Berlin, 1985, 294 pp.

[13] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 304 pp.

[14] Shevchuk I.A., Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992, 225 pp.