Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 268-278
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In space $L_{2,\rho}$ of bivariate functions summable with square on set $Q=[-1,1]^2$ with weight $\rho(x,y)={1}/{\sqrt{(1-x^{2})(1-y^{2})}}$ the sharp inequalities of Jackson–Stechkin type in which the best polynomial approximation estimated above by Peetre $\mathcal{K}$-functional were obtained. We also find the exact values of various widths of classes of functions defined by generalized modulus of continuity and $\mathcal{K}$-functionals. Also the exact upper bounds for modules of coefficients of Fourier — Tchebychev on considered classes of functions were calculated.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
mean-squared approximation, generalized modulus of continuity, Fourier — Tchebychev double series, translated operator.
                    
                  
                
                
                @article{TIMM_2020_26_4_a18,
     author = {M. Sh. Shabozov and {\CYRO}. {\CYRA}. Jurakhonov},
     title = {Upper estimates for best mean-square approximations for some classes of bivariate functions by {Fourier-Chebyshev} sums},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {268--278},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/}
}
                      
                      
                    TY - JOUR AU - M. Sh. Shabozov AU - О. А. Jurakhonov TI - Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 268 EP - 278 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/ LA - ru ID - TIMM_2020_26_4_a18 ER -
%0 Journal Article %A M. Sh. Shabozov %A О. А. Jurakhonov %T Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums %J Trudy Instituta matematiki i mehaniki %D 2020 %P 268-278 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/ %G ru %F TIMM_2020_26_4_a18
M. Sh. Shabozov; О. А. Jurakhonov. Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 268-278. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/
