@article{TIMM_2020_26_4_a18,
author = {M. Sh. Shabozov and {\CYRO}. {\CYRA}. Jurakhonov},
title = {Upper estimates for best mean-square approximations for some classes of bivariate functions by {Fourier-Chebyshev} sums},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {268--278},
year = {2020},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/}
}
TY - JOUR AU - M. Sh. Shabozov AU - О. А. Jurakhonov TI - Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 268 EP - 278 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/ LA - ru ID - TIMM_2020_26_4_a18 ER -
%0 Journal Article %A M. Sh. Shabozov %A О. А. Jurakhonov %T Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums %J Trudy Instituta matematiki i mehaniki %D 2020 %P 268-278 %V 26 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/ %G ru %F TIMM_2020_26_4_a18
M. Sh. Shabozov; О. А. Jurakhonov. Upper estimates for best mean-square approximations for some classes of bivariate functions by Fourier-Chebyshev sums. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 268-278. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a18/
[1] Pashkovskii S., Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Fizmatgiz, M., 1983, 384 pp.
[2] Vasilev N.I., Klokov Yu.A., Shkerstena A.Ya., Primenenie polinomov Chebysheva v chislennom analize, Zinatne, Riga, 1984, 240 pp.
[3] Beerends R.I., “Chebyshev polynomials in several variables and the radial part of the Laplace-Beltrami operator”, Trans. Amer. Math. Sec., 328:2 (1991), 1951–1961 | DOI
[4] Lidl R., “Tschebyscheff polynome in mehreren Variablen”, J. reine und angew. Math., 273 (1975), 178–198 | DOI
[5] Ricci P.E., “I polynomi di Tchbycheff in piu variabli”, Rend. Math. Appl., 11:2 (1978), 295–327
[6] Suetin P.K., Ortogonalnye mnogochleny po dvum peremennym, Nauka, M., 1988, 384 pp.
[7] Abilov V.A., Kerimov M.K., “Ob otsenkakh ostatochnykh chlenov kratnykh ryadov Fure - Chebysheva i kubaturnykh formul Chebyshevskogo tipa”, Zhurn. vychislit. matematiki i mat. fiziki, 43:5 (2003), 643–663
[8] Dzhurakhonov O. A., “Priblizhenie funktsii dvukh peremennykh “krugovymi” summami Fure - Chebysheva v $L_{2,\rho}$”, Vladikavkaz. mat. zhurn., 22:2 (2020), 5–17
[9] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teorii vlozheniya, Nauka, M., 1977, 456 pp.
[10] Vakarchuk S.B., Shvachko A.V., “O nailuchshei approksimatsii v srednem a algebraicheskimi polinomami s vesom i tochnykh znacheniyakh poperechnikov klassov funktsii”, Ukr. mat. zhurn., 65:12 (2013), 1604–1621
[11] Vakarchuk S.B., “Priblizhenie funktsii v srednem na veschestvennoi osi algebraicheskimi polinomami s vesom Chebysheva - Ermita i poperechniki funktsionalnykh klassov”, Mat. zametki, 95:5 (2014), 666–684
[12] Pinkus A., n-Widths in approximation theory, Springer-Verlag, Berlin, 1985, 294 pp.
[13] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 304 pp.
[14] Shevchuk I.A., Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992, 225 pp.