Periodic wavelets on a multidimensional sphere and their application for function approximation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 255-267 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The author's scheme for constructing a multiresolution analysis on a sphere in $\mathbb{R}^3$ with respect to the spherical coordinates, which was published in 2019, is extended to spheres in $\mathbb{R}^n$ $(n\ge 3)$. In contrast to other papers, only periodic wavelets on the axis and their tensor products are used. Approximation properties are studied only for the wavelets based on the simplest scalar wavelets of Kotel'nikov–Meyer type with the compact support of their Fourier transforms. The implementation of the idea of a smooth continuation of functions from a sphere to $2\pi$-periodic functions in the polar coordinates analytically (without the complicated geometric interpretation made by the author earlier in $\mathbb{R}^3$) turned out to be very simple.
Keywords: wavelet, scaling function, approximation.
@article{TIMM_2020_26_4_a17,
     author = {N. I. Chernykh},
     title = {Periodic wavelets on a multidimensional sphere and their application for function approximation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {255--267},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a17/}
}
TY  - JOUR
AU  - N. I. Chernykh
TI  - Periodic wavelets on a multidimensional sphere and their application for function approximation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 255
EP  - 267
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a17/
LA  - ru
ID  - TIMM_2020_26_4_a17
ER  - 
%0 Journal Article
%A N. I. Chernykh
%T Periodic wavelets on a multidimensional sphere and their application for function approximation
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 255-267
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a17/
%G ru
%F TIMM_2020_26_4_a17
N. I. Chernykh. Periodic wavelets on a multidimensional sphere and their application for function approximation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 255-267. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a17/

[1] Chernykh N.I., “Interpolating wavelets on the sphere”, Ural Math. J., 5:2 (2019), 3–12 | DOI

[2] Subbotin Yu.N., Chernykh N.I., “Interpolyatsionno-ortogonalnye sistemy vspleskov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:3 (2008), 153–161

[3] Subbotin Yu.N., Chernykh N.I., “Interpolyatsionnye vspleski v kraevykh zadachakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:4 (2016), 257–268

[4] Dahlke S., Dahmen W., Weinreich I., Schmitt E., “Multiresolution analysis and wavelets on $\mathbb S^2$ and $\mathbb S^3$”, Numer. Funct. Anal. Optim., 16:1–2 (1995), 19–41 | DOI

[5] Potts D., Tasche M., “Interpolatory wavelets on the sphere”, Approximation Theory, 8 (1995), 335–342 | DOI

[6] Schroder P., Sweldens W., “Spherical wavelets: Efficiently representing functions on the sphere”, Wavelets in the Geosciences, Lect. Notes in Earth Sci., 90, 1995, 158–188 | DOI

[7] Narcowich F.J., Ward J.D., “Nonstationary wavelets on the m-sphere for scattered data”, Appl Appl. Comput. Harmon. Anal., 3 (1996), 324–336 | DOI

[8] Freeden W., Schreiner M., “Orthogonal and nonorthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere”, Constr. Approx., 14:4 (1998), 493–515 | DOI

[9] Farkov Yu., “B-spline wavelets on the sphere”, Proc. of the Intern. Workshop “Self-Similar Systems”, 30, 1999, 79–82

[10] Skopina M.A., Polynomial expansions of continuous functions on the sphere and on the disk, IMI Research Reports, vol. 5, Department of Mathematics, University of South Carolina, 2001, 13 pp.

[11] Weinreich I., “A construction of $C^1$-wavelets on the two-dimensional sphere”, Appl. Comput. Harmon. Anal., 10 (2001), 1–26 | DOI

[12] Askari-Hemmat A., Dehghan M.A., Skopina M.A., “Polynomial wavelet-type expansions on the sphere”, Math. Notes, 74:2 (2003), 278–285 | DOI

[13] Narcowich F.J., Petrushev P., Ward J.D., “Localized tight frames on spheres”, SIAM J. Math. Anal., 38 (2006), 574–594 | DOI

[14] Dai F., “Characterizations of function spaces on the sphere using frames”, Trans. Amer. Math. Soc., 359:2 (2007), 567–589 | DOI

[15] Sobolev S.L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp.

[16] Arestov V.V., Deikalova M.V., “Neravenstvo Nikolskogo dlya algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:2 (2013), 34–47 | DOI

[17] Deikalova M.V., “Funktsional Taikova v prostranstve algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Mat. zametki, 84:4 (2008), 532–551

[18] Babenko A.G., “Tochnoe neravenstvo Dzheksona - Stechkina v prostranstve $L^2$ funktsii na mnogomernoi sfere”, Mat. zametki, 60:3 (1996), 333–355