@article{TIMM_2020_26_4_a17,
author = {N. I. Chernykh},
title = {Periodic wavelets on a multidimensional sphere and their application for function approximation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {255--267},
year = {2020},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a17/}
}
TY - JOUR AU - N. I. Chernykh TI - Periodic wavelets on a multidimensional sphere and their application for function approximation JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 255 EP - 267 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a17/ LA - ru ID - TIMM_2020_26_4_a17 ER -
N. I. Chernykh. Periodic wavelets on a multidimensional sphere and their application for function approximation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 255-267. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a17/
[1] Chernykh N.I., “Interpolating wavelets on the sphere”, Ural Math. J., 5:2 (2019), 3–12 | DOI
[2] Subbotin Yu.N., Chernykh N.I., “Interpolyatsionno-ortogonalnye sistemy vspleskov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:3 (2008), 153–161
[3] Subbotin Yu.N., Chernykh N.I., “Interpolyatsionnye vspleski v kraevykh zadachakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:4 (2016), 257–268
[4] Dahlke S., Dahmen W., Weinreich I., Schmitt E., “Multiresolution analysis and wavelets on $\mathbb S^2$ and $\mathbb S^3$”, Numer. Funct. Anal. Optim., 16:1–2 (1995), 19–41 | DOI
[5] Potts D., Tasche M., “Interpolatory wavelets on the sphere”, Approximation Theory, 8 (1995), 335–342 | DOI
[6] Schroder P., Sweldens W., “Spherical wavelets: Efficiently representing functions on the sphere”, Wavelets in the Geosciences, Lect. Notes in Earth Sci., 90, 1995, 158–188 | DOI
[7] Narcowich F.J., Ward J.D., “Nonstationary wavelets on the m-sphere for scattered data”, Appl Appl. Comput. Harmon. Anal., 3 (1996), 324–336 | DOI
[8] Freeden W., Schreiner M., “Orthogonal and nonorthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere”, Constr. Approx., 14:4 (1998), 493–515 | DOI
[9] Farkov Yu., “B-spline wavelets on the sphere”, Proc. of the Intern. Workshop “Self-Similar Systems”, 30, 1999, 79–82
[10] Skopina M.A., Polynomial expansions of continuous functions on the sphere and on the disk, IMI Research Reports, vol. 5, Department of Mathematics, University of South Carolina, 2001, 13 pp.
[11] Weinreich I., “A construction of $C^1$-wavelets on the two-dimensional sphere”, Appl. Comput. Harmon. Anal., 10 (2001), 1–26 | DOI
[12] Askari-Hemmat A., Dehghan M.A., Skopina M.A., “Polynomial wavelet-type expansions on the sphere”, Math. Notes, 74:2 (2003), 278–285 | DOI
[13] Narcowich F.J., Petrushev P., Ward J.D., “Localized tight frames on spheres”, SIAM J. Math. Anal., 38 (2006), 574–594 | DOI
[14] Dai F., “Characterizations of function spaces on the sphere using frames”, Trans. Amer. Math. Soc., 359:2 (2007), 567–589 | DOI
[15] Sobolev S.L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp.
[16] Arestov V.V., Deikalova M.V., “Neravenstvo Nikolskogo dlya algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:2 (2013), 34–47 | DOI
[17] Deikalova M.V., “Funktsional Taikova v prostranstve algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Mat. zametki, 84:4 (2008), 532–551
[18] Babenko A.G., “Tochnoe neravenstvo Dzheksona - Stechkina v prostranstve $L^2$ funktsii na mnogomernoi sfere”, Mat. zametki, 60:3 (1996), 333–355