Periodic wavelets on a multidimensional sphere and their application for function approximation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 255-267

Voir la notice de l'article provenant de la source Math-Net.Ru

The author's scheme for constructing a multiresolution analysis on a sphere in $\mathbb{R}^3$ with respect to the spherical coordinates, which was published in 2019, is extended to spheres in $\mathbb{R}^n$ $(n\ge 3)$. In contrast to other papers, only periodic wavelets on the axis and their tensor products are used. Approximation properties are studied only for the wavelets based on the simplest scalar wavelets of Kotel'nikov–Meyer type with the compact support of their Fourier transforms. The implementation of the idea of a smooth continuation of functions from a sphere to $2\pi$-periodic functions in the polar coordinates analytically (without the complicated geometric interpretation made by the author earlier in $\mathbb{R}^3$) turned out to be very simple.
Keywords: wavelet, scaling function, approximation.
@article{TIMM_2020_26_4_a17,
     author = {N. I. Chernykh},
     title = {Periodic wavelets on a multidimensional sphere and their application for function approximation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {255--267},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a17/}
}
TY  - JOUR
AU  - N. I. Chernykh
TI  - Periodic wavelets on a multidimensional sphere and their application for function approximation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 255
EP  - 267
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a17/
LA  - ru
ID  - TIMM_2020_26_4_a17
ER  - 
%0 Journal Article
%A N. I. Chernykh
%T Periodic wavelets on a multidimensional sphere and their application for function approximation
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 255-267
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a17/
%G ru
%F TIMM_2020_26_4_a17
N. I. Chernykh. Periodic wavelets on a multidimensional sphere and their application for function approximation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 255-267. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a17/