Geometric approach to finding the conditional extrema
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 244-254

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give a geometric interpretation and a geometric proof of the necessary condition for the existence of a constrained extremum. The presented approach can be applied to finding constrained extrema of nondifferentiable functions (i.e., when Lagrange's method of undetermined multipliers is not applicable in the “classical” form). The following examples are considered: the inequality of arithmetic and geometric means, Young's inequality for products, and Jensen's inequality.
Keywords: interpolation; divided difference; spline; derivative.
@article{TIMM_2020_26_4_a16,
     author = {D. S. Telyakovskii and S. A. Telyakovskii},
     title = {Geometric approach to finding the conditional extrema},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {244--254},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a16/}
}
TY  - JOUR
AU  - D. S. Telyakovskii
AU  - S. A. Telyakovskii
TI  - Geometric approach to finding the conditional extrema
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 244
EP  - 254
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a16/
LA  - ru
ID  - TIMM_2020_26_4_a16
ER  - 
%0 Journal Article
%A D. S. Telyakovskii
%A S. A. Telyakovskii
%T Geometric approach to finding the conditional extrema
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 244-254
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a16/
%G ru
%F TIMM_2020_26_4_a16
D. S. Telyakovskii; S. A. Telyakovskii. Geometric approach to finding the conditional extrema. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 244-254. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a16/