Geometric approach to finding the conditional extrema
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 244-254 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we give a geometric interpretation and a geometric proof of the necessary condition for the existence of a constrained extremum. The presented approach can be applied to finding constrained extrema of nondifferentiable functions (i.e., when Lagrange's method of undetermined multipliers is not applicable in the “classical” form). The following examples are considered: the inequality of arithmetic and geometric means, Young's inequality for products, and Jensen's inequality.
Keywords: interpolation; divided difference; spline; derivative.
@article{TIMM_2020_26_4_a16,
     author = {D. S. Telyakovskii and S. A. Telyakovskii},
     title = {Geometric approach to finding the conditional extrema},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {244--254},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a16/}
}
TY  - JOUR
AU  - D. S. Telyakovskii
AU  - S. A. Telyakovskii
TI  - Geometric approach to finding the conditional extrema
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 244
EP  - 254
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a16/
LA  - ru
ID  - TIMM_2020_26_4_a16
ER  - 
%0 Journal Article
%A D. S. Telyakovskii
%A S. A. Telyakovskii
%T Geometric approach to finding the conditional extrema
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 244-254
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a16/
%G ru
%F TIMM_2020_26_4_a16
D. S. Telyakovskii; S. A. Telyakovskii. Geometric approach to finding the conditional extrema. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 244-254. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a16/

[1] Mordukhovich Boris S., Variational analysis and generalized differentiation, v. I, Ser. Fundamental Principles of Math. Sci., 330, Basic theory, Springer-Verlag, Berlin, 2006, 579 pp.

[2] Vinter Richard, Optimal control, Birkhauser, Boston, 2010, 507 pp.

[3] Santambrogio Filippo, Optimal transport for applied mathematicians: Calculus of variations, PDEs, and modeling, Ser. Progress in Nonlinear Differential Equations and Their Applications, 87, Birkhauser, Basel, 2015, 353 pp.

[4] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski R.R., Nonsmooth analysis and control theory, Ser. Graduate Texts in Math., Springer-Verlag, N Y, 1998, 278 pp.

[5] Polovinkin E.S., Balashov M.V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp.

[6] Kurant R., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1970, 672 pp.

[7] Kudryavtsev L.D., Matematicheskii analiz, v. 2, Drofa, M., 2004, 720 pp.

[8] Shilov G.E., Matematicheskii analiz. Funktsii neskolkikh veschestvennykh peremennykh, Nauka, M., 1972, 624 pp.

[9] Lowan A.N., “Note on an elementary method for generating inequalities”, Scripta Mathematica, 21:2–3 (1955), 218–220

[10] Balk M.B., Geometricheskie prilozheniya ponyatiya o tsentre tyazhesti, Ser. Biblioteka matematicheskogo kruzhka, no. 9, Fizmatlit, M., 1959, 230 pp.