Extremal interpolation on the semiaxis with the smallest norm of the third derivative
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 210-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The following problem is considered. For a class of interpolated sequences $y=\{y_{k}\}_{k=-\infty}^{+\infty}$ of real numbers such that their third-order divided difference constructed for arbitrary knots $\{x_{k}\}_{k=-\infty}^{+\infty}$ are bounded in absolute value by a fixed positive number, it is required to find a function $f$ having the third derivative almost everywhere and such that $f(x_{k})=y_{k}\ (k\in\mathbb{Z})$ and the third derivative has the smallest $L_{\infty}$-norm. The problem is solved on the positive semiaxis $\mathbb{R}_{+}=(0,+\infty)$ for geometric grids in which the sequence of steps $h_{k}=x_{k+1}-x_{k}$ $(k\in\mathbb{Z})$ is a geometric progression with ratio $p$ $(p>1)$; i.e., $h_{k+1}/h_{k}=p$. In the case of a uniform grid $x_{k}=kh\ (h>0,k\in\mathbb{Z})$ on the whole axis $\mathbb{R}$ (i.e., for $p=1$), this problem was solved by Yu. N. Subbotin in 1965 and is known as the Yanenko–Stechkin–Subbotin problem of extremal function interpolation.
Mots-clés : interpolation
Keywords: divided difference, splines, difference equation.
@article{TIMM_2020_26_4_a13,
     author = {S. I. Novikov and V. T. Shevaldin},
     title = {Extremal interpolation on the semiaxis with the smallest norm of the third derivative},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {210--223},
     year = {2020},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a13/}
}
TY  - JOUR
AU  - S. I. Novikov
AU  - V. T. Shevaldin
TI  - Extremal interpolation on the semiaxis with the smallest norm of the third derivative
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 210
EP  - 223
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a13/
LA  - ru
ID  - TIMM_2020_26_4_a13
ER  - 
%0 Journal Article
%A S. I. Novikov
%A V. T. Shevaldin
%T Extremal interpolation on the semiaxis with the smallest norm of the third derivative
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 210-223
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a13/
%G ru
%F TIMM_2020_26_4_a13
S. I. Novikov; V. T. Shevaldin. Extremal interpolation on the semiaxis with the smallest norm of the third derivative. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 210-223. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a13/

[1] Gelfond A.O., Ischislenie konechnykh raznostei, Nauka, M., 1967, 376 pp.

[2] Favard J., “Sur l'interpolation”, J. Math. Pures Appl., 19 (1940), 281–306

[3] Subbotin Yu.N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN SSSR, 78 (1965), 24–42

[4] Subbotin Yu.N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei n-i proizvodnoi”, Tr. MIAN SSSR, 88 (1967), 30–60

[5] Kunkle Th., “Favard's interpolation problem in one or more variables”, Constructive Approxim., 18 (2002), 467–478 | DOI

[6] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 316 pp.

[7] Krein M.G., “Integralnye uravneniya na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, Uspekhi matem. nauk, 13:5 (83) (1958), 3–120

[8] Subbotin Yu.N., “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Tr. MIAN SSSR, 138 (1975), 118–173