Extremal interpolation on the semiaxis with the smallest norm of the third derivative
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 210-223
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following problem is considered. For a class of interpolated sequences $y=\{y_{k}\}_{k=-\infty}^{+\infty}$ of real numbers such that their third-order divided difference constructed for arbitrary knots $\{x_{k}\}_{k=-\infty}^{+\infty}$ are bounded in absolute value by a fixed positive number, it is required to find a function $f$ having the third derivative almost everywhere and such that $f(x_{k})=y_{k}\ (k\in\mathbb{Z})$ and the third derivative has the smallest $L_{\infty}$-norm. The problem is solved on the positive semiaxis $\mathbb{R}_{+}=(0,+\infty)$ for geometric grids in which the sequence of steps $h_{k}=x_{k+1}-x_{k}$ $(k\in\mathbb{Z})$ is a geometric progression with ratio $p$ $(p>1)$; i.e., $h_{k+1}/h_{k}=p$. In the case of a uniform grid $x_{k}=kh\ (h>0,k\in\mathbb{Z})$ on the whole axis $\mathbb{R}$ (i.e., for $p=1$), this problem was solved by Yu. N. Subbotin in 1965 and is known as the Yanenko–Stechkin–Subbotin problem of extremal function interpolation.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
interpolation
Keywords: divided difference, splines, difference equation.
                    
                  
                
                
                Keywords: divided difference, splines, difference equation.
@article{TIMM_2020_26_4_a13,
     author = {S. I. Novikov and V. T. Shevaldin},
     title = {Extremal interpolation on the semiaxis with the smallest norm of the third derivative},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {210--223},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a13/}
}
                      
                      
                    TY - JOUR AU - S. I. Novikov AU - V. T. Shevaldin TI - Extremal interpolation on the semiaxis with the smallest norm of the third derivative JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 210 EP - 223 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a13/ LA - ru ID - TIMM_2020_26_4_a13 ER -
%0 Journal Article %A S. I. Novikov %A V. T. Shevaldin %T Extremal interpolation on the semiaxis with the smallest norm of the third derivative %J Trudy Instituta matematiki i mehaniki %D 2020 %P 210-223 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a13/ %G ru %F TIMM_2020_26_4_a13
S. I. Novikov; V. T. Shevaldin. Extremal interpolation on the semiaxis with the smallest norm of the third derivative. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 210-223. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a13/
