Keywords: divided difference, splines, difference equation.
@article{TIMM_2020_26_4_a13,
author = {S. I. Novikov and V. T. Shevaldin},
title = {Extremal interpolation on the semiaxis with the smallest norm of the third derivative},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {210--223},
year = {2020},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a13/}
}
TY - JOUR AU - S. I. Novikov AU - V. T. Shevaldin TI - Extremal interpolation on the semiaxis with the smallest norm of the third derivative JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 210 EP - 223 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a13/ LA - ru ID - TIMM_2020_26_4_a13 ER -
S. I. Novikov; V. T. Shevaldin. Extremal interpolation on the semiaxis with the smallest norm of the third derivative. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 210-223. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a13/
[1] Gelfond A.O., Ischislenie konechnykh raznostei, Nauka, M., 1967, 376 pp.
[2] Favard J., “Sur l'interpolation”, J. Math. Pures Appl., 19 (1940), 281–306
[3] Subbotin Yu.N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN SSSR, 78 (1965), 24–42
[4] Subbotin Yu.N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei n-i proizvodnoi”, Tr. MIAN SSSR, 88 (1967), 30–60
[5] Kunkle Th., “Favard's interpolation problem in one or more variables”, Constructive Approxim., 18 (2002), 467–478 | DOI
[6] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 316 pp.
[7] Krein M.G., “Integralnye uravneniya na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, Uspekhi matem. nauk, 13:5 (83) (1958), 3–120
[8] Subbotin Yu.N., “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Tr. MIAN SSSR, 138 (1975), 118–173