On Stable Reconstruction of Analytic Functions from Fourier Samples
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 182-195

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability of reconstruction of analytic functions from the values of $2m+1$ coefficients of its Fourier series is studied. The coefficients can be taken from an arbitrary symmetric set $\delta_m \subset \mathbb{Z}$ of cardinality $2m+1$. It is known that, for $\delta_m=\{ j: |j| \le m\}$, i.e., if the coefficients are consecutive, the fastest possible convergence rate in the case of stable reconstruction is an exponential function of the square root of $m$. Any method with faster convergence is highly unstable. In particular, exponential convergence implies exponential ill-conditioning. In this paper we show that if the sets $(\delta_m)$ are chosen freely, there exist reconstruction operators $(\phi_{\delta_m})$ that have exponential convergence rate and are almost stable; specifically, their condition numbers grow at most linearly: $\kappa_{\delta_m}$. We also show that this result cannot be noticeably strengthened. More precisely, for any sets $(\delta_m)$ and any reconstruction operators $(\phi_{\delta_m})$, exponential convergence is possible only if $\kappa_{\delta_m} \ge c\,m^{1/2}$.
Mots-clés : Fourier coefficients, stable reconstruction
Keywords: polynomial inequalities.
@article{TIMM_2020_26_4_a11,
     author = {S. V. Konyagin and A. Yu. Shadrin},
     title = {On {Stable} {Reconstruction} of {Analytic} {Functions} from {Fourier} {Samples}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {182--195},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a11/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - A. Yu. Shadrin
TI  - On Stable Reconstruction of Analytic Functions from Fourier Samples
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 182
EP  - 195
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a11/
LA  - ru
ID  - TIMM_2020_26_4_a11
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A A. Yu. Shadrin
%T On Stable Reconstruction of Analytic Functions from Fourier Samples
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 182-195
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a11/
%G ru
%F TIMM_2020_26_4_a11
S. V. Konyagin; A. Yu. Shadrin. On Stable Reconstruction of Analytic Functions from Fourier Samples. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 4, pp. 182-195. http://geodesic.mathdoc.fr/item/TIMM_2020_26_4_a11/