A Criterion for the Existence of Nondestructive Controls in the Problem of Optimal Exploitation of a Binary-Structured System
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 101-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Earlier the authors proved the equivalence of a sustainable exploitation problem for a system of renewable resources and a certain mathematical program. In this paper we study the properties of a map describing the dependence of the state vector of the system on the control. In the particular case of a structured population described by the binary Leslie model, conditions for the objective function are characterized under which there are optimal controls preserving all structural divisions of the system. In this case, we use the notion of local irreducibility, which generalizes the classical notion of map irreducibility.
Keywords: optimal exploitation of ecosystems, nondestructive controls, irreducible map, concave programming.
@article{TIMM_2020_26_3_a9,
     author = {V. D. Mazurov and A. I. Smirnov},
     title = {A {Criterion} for the {Existence} of {Nondestructive} {Controls} in the {Problem} of {Optimal} {Exploitation} of a {Binary-Structured} {System}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {101--117},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a9/}
}
TY  - JOUR
AU  - V. D. Mazurov
AU  - A. I. Smirnov
TI  - A Criterion for the Existence of Nondestructive Controls in the Problem of Optimal Exploitation of a Binary-Structured System
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 101
EP  - 117
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a9/
LA  - ru
ID  - TIMM_2020_26_3_a9
ER  - 
%0 Journal Article
%A V. D. Mazurov
%A A. I. Smirnov
%T A Criterion for the Existence of Nondestructive Controls in the Problem of Optimal Exploitation of a Binary-Structured System
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 101-117
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a9/
%G ru
%F TIMM_2020_26_3_a9
V. D. Mazurov; A. I. Smirnov. A Criterion for the Existence of Nondestructive Controls in the Problem of Optimal Exploitation of a Binary-Structured System. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 101-117. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a9/

[1] The state of world fisheries and aquacultur 2018, Meeting the sustainable development goals. FAO-2018, UNO, Rome, 2018, 210 pp.

[2] The state of the world's forest 2018, Meeting the sustainable development goals. FAO-2018, UNO, Rome, 2018, 118 pp.

[3] Wallmo K., Bisack K. D., Lew D. K., Squires D. E., “Editorial: The Economics of protected marine species: Concepts in research and management”, Front. Mar. Sci., 3 (2016), 1–2 | DOI

[4] De Lara M., Doyen L., Sustainable management of natural resources. Mathematical models and methods, Springer-Verlag, Berlin; Heidelberg, 2008, 266 pp. | DOI

[5] Usher M. B., “A matrix approach to the management of renewable resources, with special reference to selection forests”, J. Appl. Ecol., 3:2 (1966), 355–367 | DOI

[6] Williamson M. H., “Introducing students to the concepts of population dynamics”, Proc. British Ecological Society symposium “The teaching of ecology”, Blackwell, Oxford, 1967, 169–175

[7] Dunkel G. M., “Maximum sustainable yields”, SIAM J. Appl. Math., 19:2 (1970), 367–378 | DOI | MR | Zbl

[8] Doubleday W. G., “Harvesting in matrix population model”, Biometrics, 31:1 (1975), 189–200 | DOI | Zbl

[9] Reed W. J., “Optimum age-specific harvesting in a nonlinear population model”, Biometrics, 36:4 (1980), 579–593 | DOI | MR | Zbl

[10] Getz W. M., “The ultimate-sustainable-yield problem in nonlinear age-structured populations”, Math. Biosci., 48:3–4 (1980), 279–292 | DOI | Zbl

[11] Grey D. R., “Harvesting under density-dependent mortality and fecundity”, J. Math. Biol., 26:2 (1988), 193–197 | DOI | MR

[12] Getz W. M., Haight R. G., Population harvesting: Demographic models of fish, forest and animal resources, Princeton University Press, Princeton, New Jersey, 1989, 391 pp. | MR

[13] Caswell H., Matrix population models: Construction, analysis, and interpretation, 2nd ed., Sinauer Associates, Inc. Publishers, Sunderland, 2001, 722 pp.

[14] Lefkovitch L. P., “The study of population growth in organisms grouped by stages”, Biometrics, 21:1 (1965), 1–18 | DOI | MR

[15] Caswell H., de Vries C., Hartemink N., Roth G., van Daalen S. F., “Age-stage classified demographic analysis: a comprehensive approach”, Ecological Monographs, 88:4 (2018), 560–584 | DOI | MR

[16] Goodman L. A., “The analysis of population growth when the birth and death rates depend upon several factors”, Biometrics, 25:4 (1969), 659–681 | DOI | MR

[17] Rogers A., Applied multiregional demography: migration and population redistribution, Springer, Cham, 2015, 114 pp. | DOI

[18] Frisman E. Ya., Kulakov M. P., Revutskaya O. L., Zhdanova O. L., Neverova G. P., “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151 | DOI | MR

[19] Smirnov A. I., “O nekotorykh nelineinykh obobscheniyakh modeli Lesli, uchityvayuschikh effekt nasyscheniya”, Vestnik UIEUiP, 2010, no. 4(13), 98–101

[20] Mazurov Vl. D., Smirnov A. I., “On the reduction of the optimal non-destructive system exploitation problem to the mathematical programming problem”, Proc. of VIII International Conf. on Optimization and Applications (OPTIMA-2017), eds. Yu. G. Evtushenko et al., 2017, 392–398

[21] Mazurov Vl. D., Smirnov A. I., “Properties of admissible set of an optimal non-destructive system exploitation problem in some general formalization”, Proc. of the School-Seminar on Optimization Problems and their Applications (OPTA-SCL 2018), eds. S. Belim S. et al., Omsk, 2018, 359–371

[22] Smirnov A. I., Mazurov Vl. D., “On existence of optimal non-destructive controls for ecosystem exploitation problem applied to a generalization of Leslie model”, Proc. of IX Internat. Conf. on Optimization and Applications (OPTIMA-2018), (Supplementary Volume), eds. Yu. G. Evtushenko et al., 2018, 199–213 | DOI

[23] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 469 pp.

[24] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972, 518 pp.

[25] Smirnov A. I., Mazurov Vl. D., “Generalization of controls bimodality property in the optimal exploitation problem for ecological population with binary structure”, Proc. Internat. Conf. on Optimization and Applications (OPTIMA 2019): Optimization and Applications, Ser. Communications in Computer and Information Science, 1145, eds. M. Jacimovic et al., 2020, 206–221 | DOI