Nonassociative enveloping algebras of Chevalley algebras
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 91-100
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An algebra $R$ is said to be an exact enveloping algebra for a Lie algebra $L$ if $L$ is isomorphic to the algebra $R^{(-)}$ obtained by replacing the multiplication in $R$ by the commutation: $a*b:= ab- ba$. We study exact enveloping algebras of certain subalgebras of a Chevalley algebra over a field $K$ associated with an indecomposable root system $\Phi$. The structure constants of the Chevalley basis of this algebra are chosen with a certain arbitrariness for the niltriangular subalgebra $N\Phi(K)$ with the basis $\{e_r\ |\ r\in\Phi^+\}$. The exact enveloping algebras $R$ for $N\Phi(K)$, which were found in 2018, depend on this choice. The notion of standard enveloping algebra is introduced. For the type $A_{n-1}$, one of the exact enveloping algebras $R$ is the algebra $NT(n,K)$ of all niltriangular $n\times n$ matrices over $K$. The theorem of R. Dubish and S. Perlis on the ideals of $NT(n,K)$ states that $R$ is standard in this case. We prove that an associative exact enveloping algebra $R$ of a Lie algebra $NT(n,K)$ of type $A_{n-1}$ $(n>3)$ is unique and isomorphic to $NT(n,K)$ up to passing to the opposite algebra $R^{({\rm op})}$. Standard enveloping algebras $R$ are described. The existence of a standard enveloping algebra is proved for the Lie algebras $N\Phi(K)$ of all types excepting $D_{n}$ $(n\geq 4)$ and $E_{n}$ $(n=6,7,8)$.
Keywords: Lie algebra, exact enveloping algebra, Chevalley algebra, standard ideal.
Mots-clés : niltriangular subalgebra
@article{TIMM_2020_26_3_a8,
     author = {V. M. Levchuk and G. S. Suleimanova and N. D. Hodyunya},
     title = {Nonassociative enveloping algebras of {Chevalley} algebras},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {91--100},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a8/}
}
TY  - JOUR
AU  - V. M. Levchuk
AU  - G. S. Suleimanova
AU  - N. D. Hodyunya
TI  - Nonassociative enveloping algebras of Chevalley algebras
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 91
EP  - 100
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a8/
LA  - ru
ID  - TIMM_2020_26_3_a8
ER  - 
%0 Journal Article
%A V. M. Levchuk
%A G. S. Suleimanova
%A N. D. Hodyunya
%T Nonassociative enveloping algebras of Chevalley algebras
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 91-100
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a8/
%G ru
%F TIMM_2020_26_3_a8
V. M. Levchuk; G. S. Suleimanova; N. D. Hodyunya. Nonassociative enveloping algebras of Chevalley algebras. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 91-100. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a8/

[1] Kaplanskii I., Algebry Li i lokalno kompaktnye gruppy, Mir, Moskva, 1974, 152 pp.

[2] Levchuk V.M., “Niltreugolnaya podalgebra algebry Shevalle: obertyvayuschaya algebra, idealy i avtomorfizmy”, Dokl. Akad. nauk, 478:2 (2018), 137–140 | Zbl

[3] Chevalley C., “Sur certain groups simples”, Tohoku Math. J., 7:1–2 (1955), 14–66 | DOI | MR | Zbl

[4] Carter R., Simple groups of Lie type, Wiley and Sons, N Y, 1972, 331 pp. | MR | Zbl

[5] Dubish R., Perlis S., “On total nilpotent algebras”, Amer. J. Math., 73:3 (1951), 439–452 | DOI | MR

[6] Egorychev G.P., Levchuk V.M., “Enumeration in the Chevalley algebras”, ACM SIGSAM Bulletin, 35:2 (2001), 20–34 | DOI | Zbl

[7] Levchuk V. M., Suleimanova G. S., “Extremal and maximal normal abelian subgroups of a maximal unipotent subgroup in groups of Lie type”, J. Algebra, 349:1 (2012), 98–116 | DOI | MR | Zbl

[8] Serr Zh.-P., Algebry Li i gruppy Li, Mir, M., 1969, 376 pp.

[9] Levchuk V. M., “Avtomorfizmy unipotentnykh podgrupp grupp Shevalle”, Algebra i logika, 29:3 (1990), 315–338 | MR | Zbl

[10] Hodyunya N.D., “Enumerations of ideals in niltriangular subalgebra of Chevalley algebras”, J. SFU Math. Phys., 11:3 (2018), 271–277 | DOI | MR