Nonassociative enveloping algebras of Chevalley algebras
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 91-100
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An algebra $R$ is said to be an exact enveloping algebra for a Lie algebra $L$ if $L$ is isomorphic to the algebra $R^{(-)}$ obtained by replacing the multiplication in $R$ by the commutation: $a*b:= ab- ba$. We study exact enveloping algebras of certain subalgebras of a Chevalley algebra over a field $K$ associated with an indecomposable root system $\Phi$. The structure constants of the Chevalley basis of this algebra are chosen with a certain arbitrariness for the niltriangular subalgebra $N\Phi(K)$ with the basis $\{e_r\ |\ r\in\Phi^+\}$. The exact enveloping algebras $R$ for $N\Phi(K)$, which were found in 2018, depend on this choice. The notion of standard enveloping algebra is introduced. For the type $A_{n-1}$, one of the exact enveloping algebras $R$ is the algebra $NT(n,K)$ of all niltriangular $n\times n$ matrices over $K$. The theorem of R. Dubish and S. Perlis on the ideals of $NT(n,K)$ states that $R$ is standard in this case. We prove that an associative exact enveloping algebra $R$ of a Lie algebra $NT(n,K)$ of type $A_{n-1}$ $(n>3)$ is unique and isomorphic to $NT(n,K)$ up to passing to the opposite algebra $R^{({\rm op})}$. Standard enveloping algebras $R$ are described. The existence of a standard enveloping algebra is proved for the Lie algebras $N\Phi(K)$ of all types excepting $D_{n}$ $(n\geq 4)$ and $E_{n}$ $(n=6,7,8)$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Lie algebra, exact enveloping algebra, Chevalley algebra, standard ideal.
Mots-clés : niltriangular subalgebra
                    
                  
                
                
                Mots-clés : niltriangular subalgebra
@article{TIMM_2020_26_3_a8,
     author = {V. M. Levchuk and G. S. Suleimanova and N. D. Hodyunya},
     title = {Nonassociative enveloping algebras of {Chevalley} algebras},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {91--100},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a8/}
}
                      
                      
                    TY - JOUR AU - V. M. Levchuk AU - G. S. Suleimanova AU - N. D. Hodyunya TI - Nonassociative enveloping algebras of Chevalley algebras JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 91 EP - 100 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a8/ LA - ru ID - TIMM_2020_26_3_a8 ER -
V. M. Levchuk; G. S. Suleimanova; N. D. Hodyunya. Nonassociative enveloping algebras of Chevalley algebras. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 91-100. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a8/