Nonassociative enveloping algebras of Chevalley algebras
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 91-100

Voir la notice de l'article provenant de la source Math-Net.Ru

An algebra $R$ is said to be an exact enveloping algebra for a Lie algebra $L$ if $L$ is isomorphic to the algebra $R^{(-)}$ obtained by replacing the multiplication in $R$ by the commutation: $a*b:= ab- ba$. We study exact enveloping algebras of certain subalgebras of a Chevalley algebra over a field $K$ associated with an indecomposable root system $\Phi$. The structure constants of the Chevalley basis of this algebra are chosen with a certain arbitrariness for the niltriangular subalgebra $N\Phi(K)$ with the basis $\{e_r\ |\ r\in\Phi^+\}$. The exact enveloping algebras $R$ for $N\Phi(K)$, which were found in 2018, depend on this choice. The notion of standard enveloping algebra is introduced. For the type $A_{n-1}$, one of the exact enveloping algebras $R$ is the algebra $NT(n,K)$ of all niltriangular $n\times n$ matrices over $K$. The theorem of R. Dubish and S. Perlis on the ideals of $NT(n,K)$ states that $R$ is standard in this case. We prove that an associative exact enveloping algebra $R$ of a Lie algebra $NT(n,K)$ of type $A_{n-1}$ $(n>3)$ is unique and isomorphic to $NT(n,K)$ up to passing to the opposite algebra $R^{({\rm op})}$. Standard enveloping algebras $R$ are described. The existence of a standard enveloping algebra is proved for the Lie algebras $N\Phi(K)$ of all types excepting $D_{n}$ $(n\geq 4)$ and $E_{n}$ $(n=6,7,8)$.
Keywords: Lie algebra, exact enveloping algebra, Chevalley algebra, standard ideal.
Mots-clés : niltriangular subalgebra
@article{TIMM_2020_26_3_a8,
     author = {V. M. Levchuk and G. S. Suleimanova and N. D. Hodyunya},
     title = {Nonassociative enveloping algebras of {Chevalley} algebras},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {91--100},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a8/}
}
TY  - JOUR
AU  - V. M. Levchuk
AU  - G. S. Suleimanova
AU  - N. D. Hodyunya
TI  - Nonassociative enveloping algebras of Chevalley algebras
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 91
EP  - 100
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a8/
LA  - ru
ID  - TIMM_2020_26_3_a8
ER  - 
%0 Journal Article
%A V. M. Levchuk
%A G. S. Suleimanova
%A N. D. Hodyunya
%T Nonassociative enveloping algebras of Chevalley algebras
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 91-100
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a8/
%G ru
%F TIMM_2020_26_3_a8
V. M. Levchuk; G. S. Suleimanova; N. D. Hodyunya. Nonassociative enveloping algebras of Chevalley algebras. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 91-100. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a8/