Refinement of estimates for the Lyapunov exponents of a class of linear nonautonomous systems of difference equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 84-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain an estimate for the norm of an $n$th-order square matrix $A^{t}$: $$ \|A^{t}\|\leq \sum^{n-1}_{k=0}C^{k}_{t}\gamma^{t-k}(\gamma+\|A\|)^{k},\quad t\geq n-1, $$ where $C^{k}_{t}$ are the binomial coefficients, $\gamma=\max\limits_{i}|\lambda_{i}|$, and $\lambda_{i}$ are the eigenvalues of $A$. Based on this estimate and using the freezing method, we improve the constants in the upper and lower estimates for the highest and lowest exponents, respectively, of the system $ x(t+1)=A(t)x(t),\ x\in \mathbb R^{n},\ t\in \mathbb Z^{+}, $ with a completely bounded matrix $A(t)$. It is assumed that the matrices $A(t)$ and $A^{-1} (t)$ satisfy the inequalities $ \|A(t)-A(s)\|\leq\delta|t-s|^{\alpha},\ \|A^{-1}(t)-A^{-1}(s)\|\leq\delta|t-s|^{\alpha} $ with some constants $0\alpha\leq 1$ and $\delta>0$ for any $t,s\in\mathbb Z^{+}$. We give an example showing that the constants $\gamma$ and $\delta$ are generally related.
Keywords: estimates for Lyapunov exponents, freezing method for discrete systems.
@article{TIMM_2020_26_3_a7,
     author = {A. V. Lasunsky},
     title = {Refinement of estimates for the {Lyapunov} exponents of a class of linear nonautonomous systems of difference equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {84--90},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a7/}
}
TY  - JOUR
AU  - A. V. Lasunsky
TI  - Refinement of estimates for the Lyapunov exponents of a class of linear nonautonomous systems of difference equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 84
EP  - 90
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a7/
LA  - ru
ID  - TIMM_2020_26_3_a7
ER  - 
%0 Journal Article
%A A. V. Lasunsky
%T Refinement of estimates for the Lyapunov exponents of a class of linear nonautonomous systems of difference equations
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 84-90
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a7/
%G ru
%F TIMM_2020_26_3_a7
A. V. Lasunsky. Refinement of estimates for the Lyapunov exponents of a class of linear nonautonomous systems of difference equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 84-90. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a7/

[1] Kuznetsov N.V., Alexeeva T.A., Leonov G.A., “Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations”, Nonlinear Dyn., 85 (2016), 195–201 | DOI | MR | Zbl

[2] Czornik A., Nawrat A., “On new estimates for Lyapunov exponents of discrete time varying linear systems”, Automatica, 46:4 (2010), 775–778 | DOI | MR | Zbl

[3] Czornik A., Mokry P., Nawrat A., “On the sigma exponent of discrete linear systems”, IEEE Transactions on Automatic Control, 55:6 (2010), 1511–1515 | DOI | MR | Zbl

[4] Czornik A., Nawrat A., Niezabitowski M., “On the Lyapunov exponents of a class of second-order discrete time linear systems with bounded perturbations”, Dynamical Systems, 28:4 (2013), 473–483 | DOI | MR | Zbl

[5] Cergeev I.N., “Opredelenie kharakteristicheskikh chastot lineinogo uravneniya”, Differents. uravneniya, 40:11 (2004), 1573 | MR

[6] Cergeev I.N., “Kharakteristiki koleblemosti i bluzhdaemosti reshenii lineinoi differentsialnoi sistemy”, Izv. RAN. Seriya matematicheskaya, 6:1 (2012), 149–172 | DOI | MR

[7] Lasunskii A.V., “Otsenki reshenii lineinykh i kvazilineinykh sistem v neavtonomnom sluchae”, Differents. uravneniya, 52:2 (2016), 177–185 | MR | Zbl

[8] Zamkovaya L.D., “K metodu zamorazhivaniya dlya diskretnykh sistem”, Differents. uravneniya, 16:4 (1980), 697–704 | MR | Zbl

[9] Zamkovaya L.D., “Otsenki pokazatelei eksponentsialnogo rosta reshenii nekotorykh sistem”, Differents. uravneniya, 24:11 (1988), 2008–2010 | Zbl

[10] Gelfand I.M., Shilov G.E., Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, Moskva, 1958, 274 pp.

[11] Bylov B.F., Vinograd R.E., Grobman D.M., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, Moskva, 1966, 576 pp.

[12] Izobov N.A., Vvedenie v teoriyu pokazatelei Lyapunova, BGU, Minsk, 2006, 319 pp.

[13] Lasunskii A.V., “Ustoichivost i sobstvennye chisla lineinykh neavtonomnykh sistem raznostnykh i differentsialnykh uravnenii”, Matematika v vysshem obrazovanii, 2010, no. 8, 37–40