Refinement of estimates for the Lyapunov exponents of a class of linear nonautonomous systems of difference equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 84-90
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain an estimate for the norm of an $n$th-order square matrix $A^{t}$: $$ \|A^{t}\|\leq \sum^{n-1}_{k=0}C^{k}_{t}\gamma^{t-k}(\gamma+\|A\|)^{k},\quad t\geq n-1, $$ where $C^{k}_{t}$ are the binomial coefficients, $\gamma=\max\limits_{i}|\lambda_{i}|$, and $\lambda_{i}$ are the eigenvalues of $A$. Based on this estimate and using the freezing method, we improve the constants in the upper and lower estimates for the highest and lowest exponents, respectively, of the system $ x(t+1)=A(t)x(t),\ x\in \mathbb R^{n},\ t\in \mathbb Z^{+}, $ with a completely bounded matrix $A(t)$. It is assumed that the matrices $A(t)$ and $A^{-1} (t)$ satisfy the inequalities $ \|A(t)-A(s)\|\leq\delta|t-s|^{\alpha},\ \|A^{-1}(t)-A^{-1}(s)\|\leq\delta|t-s|^{\alpha} $ with some constants $0\alpha\leq 1$ and $\delta>0$ for any $t,s\in\mathbb Z^{+}$. We give an example showing that the constants $\gamma$ and $\delta$ are generally related.
Keywords:
estimates for Lyapunov exponents, freezing method for discrete systems.
@article{TIMM_2020_26_3_a7,
author = {A. V. Lasunsky},
title = {Refinement of estimates for the {Lyapunov} exponents of a class of linear nonautonomous systems of difference equations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {84--90},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a7/}
}
TY - JOUR AU - A. V. Lasunsky TI - Refinement of estimates for the Lyapunov exponents of a class of linear nonautonomous systems of difference equations JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 84 EP - 90 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a7/ LA - ru ID - TIMM_2020_26_3_a7 ER -
%0 Journal Article %A A. V. Lasunsky %T Refinement of estimates for the Lyapunov exponents of a class of linear nonautonomous systems of difference equations %J Trudy Instituta matematiki i mehaniki %D 2020 %P 84-90 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a7/ %G ru %F TIMM_2020_26_3_a7
A. V. Lasunsky. Refinement of estimates for the Lyapunov exponents of a class of linear nonautonomous systems of difference equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 84-90. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a7/