Hypercomplex Models of Multichannel Images
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 69-83

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a new theoretical approach to the processing of multidimensional and multicomponent images based on the theory of commutative hypercomplex algebras, which generalize the algebra of complex numbers. The main goal of the paper is to show that commutative hypercomplex numbers can be used in multichannel image processing in a natural and effective manner. We suppose that animal brains operate with hypercomplex numbers when processing multichannel retinal images. In our approach, each multichannel pixel is regarded as a $K$-dimensional ($K$D) hypercomplex number rather than a $K$D vector, where $K$ is the number of different optical channels. This creates an effective mathematical basis for various function–number transformations of multichannel images and invariant pattern recognition.
Keywords: multichannel images, hypercomplex algebras, image processing.
@article{TIMM_2020_26_3_a6,
     author = {V. G. Labunets},
     title = {Hypercomplex {Models} of {Multichannel} {Images}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {69--83},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a6/}
}
TY  - JOUR
AU  - V. G. Labunets
TI  - Hypercomplex Models of Multichannel Images
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 69
EP  - 83
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a6/
LA  - ru
ID  - TIMM_2020_26_3_a6
ER  - 
%0 Journal Article
%A V. G. Labunets
%T Hypercomplex Models of Multichannel Images
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 69-83
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a6/
%G ru
%F TIMM_2020_26_3_a6
V. G. Labunets. Hypercomplex Models of Multichannel Images. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 69-83. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a6/