Hypercomplex Models of Multichannel Images
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 69-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present a new theoretical approach to the processing of multidimensional and multicomponent images based on the theory of commutative hypercomplex algebras, which generalize the algebra of complex numbers. The main goal of the paper is to show that commutative hypercomplex numbers can be used in multichannel image processing in a natural and effective manner. We suppose that animal brains operate with hypercomplex numbers when processing multichannel retinal images. In our approach, each multichannel pixel is regarded as a $K$-dimensional ($K$D) hypercomplex number rather than a $K$D vector, where $K$ is the number of different optical channels. This creates an effective mathematical basis for various function–number transformations of multichannel images and invariant pattern recognition.
Keywords: multichannel images, hypercomplex algebras, image processing.
@article{TIMM_2020_26_3_a6,
     author = {V. G. Labunets},
     title = {Hypercomplex {Models} of {Multichannel} {Images}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {69--83},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a6/}
}
TY  - JOUR
AU  - V. G. Labunets
TI  - Hypercomplex Models of Multichannel Images
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 69
EP  - 83
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a6/
LA  - ru
ID  - TIMM_2020_26_3_a6
ER  - 
%0 Journal Article
%A V. G. Labunets
%T Hypercomplex Models of Multichannel Images
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 69-83
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a6/
%G ru
%F TIMM_2020_26_3_a6
V. G. Labunets. Hypercomplex Models of Multichannel Images. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 69-83. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a6/

[1] Cronin T., “A retina with at least ten spectral types of photoreceptors in a mantis shrimp”, Nature, 339 (1989), 137–140 | DOI

[2] Chang C., Hyperspectral data processing: Algorithm design and analysis, Wiley Press, N Y, 2013, 1164 pp. | Zbl

[3] Schowengerdt R. A., Remote sensing - Models and methods for image processing, Acad. Press, N Y, 1997, 558 pp.

[4] Soifer V. A., Computer image processing. Part II: Methods and algorithms, VDM, Verlag, Berlin, 2010, 584 pp.

[5] Luneburg R. K., “The metric methods in binocular visual space”, J. Opt. Soc. Amer., 40:1 (1950), 627–642 | DOI | MR

[6] Luneburg R. K., “The metric methods in binocular visual”, Studies and Essays. Courant Anniv, 11:1 (1948), 215–239 | MR

[7] Labunets V., “Clifford algebra as unified language for image processing and pattern recognition”, Computational noncommutative algebra and applications, eds. J. Byrnes, G. Ostheimer, Kluwer Acad. Publ., Dordrect; Boston; London, 2003, 197–225 | DOI | MR

[8] Labunets V. G., Rundblad E. V., Astola J., “Is the Brain a “Clifford algebra quantum computer”?”, Applied geometrical algebras in computer science and engineering, eds. L. Dorst, C. Doran, J. Lasenby, Birkhauser, N Y, 2002, 486–495 | DOI | MR

[9] Labunets V., Labunets-Rundblad E. V., “Algebra and geometry of color images”, Proc. of the First Int. Workshop on Spectral Tecniques and Logic Design for Future Digital Systems, eds. J. Astola, R. Stancovic, Tampere University Publ., Tampere, 2000, 231–261

[10] Doran C. J. L., Geometric algebra and its application to mathematical physics, Cambridge University Publ., Cambridge, 1994, 324 pp. | MR

[11] Greaves Ch., “On algebraic triplets”, Proc. Irisn Acad., 3 (1847), 51–108

[12] Rundblad-Ostheimer E., Labunets V., “Spatial-color Clifford algebras for invariant image recognition”, Geometric computing with Clifford algebras, ed. G. Sommer, Springer, Berlin, 2001, 155–185 | DOI | MR

[13] Rundblad-Ostheimer E., Nikitin I., Labunets V., “Unified approach to Fourier-Clifford-Prometheus sequences, transforms and filter banks”, Computational Noncommutative Algebra and Applications, eds. J. Byrnes, G. Ostheimer, Kluwer Acad. Publ., Dordrect; Boston; London, 2003, 389–400 | DOI | MR

[14] Rundblad-Ostheimer E., Maidan E. A., Novak P., Labunets V. G., “Fast color Haar-Prometheus wavelet transforms for image processing”, Computational Noncommutative Algebra and Applications, eds. J. Byrnes, G. Ostheimer, Kluwer Acad. Publ., Dordrect; Boston; London, 2003, 389–400 | DOI | MR

[15] Rundblad-Ostheimer E., Labunets V., Astola J., “Is the visual cortex a “Fast Clifford algebra quantum computer”?”, Clifford analysis and its applications, Mathematics, Physics and Chemistry. NATO Science Series, 25, 2001, 173–183 | DOI | MR

[16] Labunets V.G., Maidan A., Rundblad-Ostheimer E., Astola J., “Colour triplet-valued wavelets and splines”, Proc. of the 2nd International Symposium on Image and Signal Processing and Analysis. In conjunction with 23rd International Conference on Information Technology Interfaces (IEEE Cat. No.01EX480), Pula, 2001, 535–541 | DOI