@article{TIMM_2020_26_3_a6,
author = {V. G. Labunets},
title = {Hypercomplex {Models} of {Multichannel} {Images}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {69--83},
year = {2020},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a6/}
}
V. G. Labunets. Hypercomplex Models of Multichannel Images. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 69-83. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a6/
[1] Cronin T., “A retina with at least ten spectral types of photoreceptors in a mantis shrimp”, Nature, 339 (1989), 137–140 | DOI
[2] Chang C., Hyperspectral data processing: Algorithm design and analysis, Wiley Press, N Y, 2013, 1164 pp. | Zbl
[3] Schowengerdt R. A., Remote sensing - Models and methods for image processing, Acad. Press, N Y, 1997, 558 pp.
[4] Soifer V. A., Computer image processing. Part II: Methods and algorithms, VDM, Verlag, Berlin, 2010, 584 pp.
[5] Luneburg R. K., “The metric methods in binocular visual space”, J. Opt. Soc. Amer., 40:1 (1950), 627–642 | DOI | MR
[6] Luneburg R. K., “The metric methods in binocular visual”, Studies and Essays. Courant Anniv, 11:1 (1948), 215–239 | MR
[7] Labunets V., “Clifford algebra as unified language for image processing and pattern recognition”, Computational noncommutative algebra and applications, eds. J. Byrnes, G. Ostheimer, Kluwer Acad. Publ., Dordrect; Boston; London, 2003, 197–225 | DOI | MR
[8] Labunets V. G., Rundblad E. V., Astola J., “Is the Brain a “Clifford algebra quantum computer”?”, Applied geometrical algebras in computer science and engineering, eds. L. Dorst, C. Doran, J. Lasenby, Birkhauser, N Y, 2002, 486–495 | DOI | MR
[9] Labunets V., Labunets-Rundblad E. V., “Algebra and geometry of color images”, Proc. of the First Int. Workshop on Spectral Tecniques and Logic Design for Future Digital Systems, eds. J. Astola, R. Stancovic, Tampere University Publ., Tampere, 2000, 231–261
[10] Doran C. J. L., Geometric algebra and its application to mathematical physics, Cambridge University Publ., Cambridge, 1994, 324 pp. | MR
[11] Greaves Ch., “On algebraic triplets”, Proc. Irisn Acad., 3 (1847), 51–108
[12] Rundblad-Ostheimer E., Labunets V., “Spatial-color Clifford algebras for invariant image recognition”, Geometric computing with Clifford algebras, ed. G. Sommer, Springer, Berlin, 2001, 155–185 | DOI | MR
[13] Rundblad-Ostheimer E., Nikitin I., Labunets V., “Unified approach to Fourier-Clifford-Prometheus sequences, transforms and filter banks”, Computational Noncommutative Algebra and Applications, eds. J. Byrnes, G. Ostheimer, Kluwer Acad. Publ., Dordrect; Boston; London, 2003, 389–400 | DOI | MR
[14] Rundblad-Ostheimer E., Maidan E. A., Novak P., Labunets V. G., “Fast color Haar-Prometheus wavelet transforms for image processing”, Computational Noncommutative Algebra and Applications, eds. J. Byrnes, G. Ostheimer, Kluwer Acad. Publ., Dordrect; Boston; London, 2003, 389–400 | DOI | MR
[15] Rundblad-Ostheimer E., Labunets V., Astola J., “Is the visual cortex a “Fast Clifford algebra quantum computer”?”, Clifford analysis and its applications, Mathematics, Physics and Chemistry. NATO Science Series, 25, 2001, 173–183 | DOI | MR
[16] Labunets V.G., Maidan A., Rundblad-Ostheimer E., Astola J., “Colour triplet-valued wavelets and splines”, Proc. of the 2nd International Symposium on Image and Signal Processing and Analysis. In conjunction with 23rd International Conference on Information Technology Interfaces (IEEE Cat. No.01EX480), Pula, 2001, 535–541 | DOI