Mots-clés : Haar condition
@article{TIMM_2020_26_3_a4,
author = {V. I. Zorkal'tsev},
title = {Chebyshev projections to a linear manifold},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {44--55},
year = {2020},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a4/}
}
V. I. Zorkal'tsev. Chebyshev projections to a linear manifold. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 44-55. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a4/
[1] Eremin I. I., Protivorechivye modeli ekonomiki, Nauka, Moskva, 1980, 160 pp.
[2] Vatolin A. A., “Ob approksimatsii nesovmestnykh sistem lineinykh uravnenii i neravenstv”, Metody approksimatsii nesobstvennykh zadach matematicheskogo programmirovaniya, Izd-vo UrO AN SSSR, Sverdlovsk, 1984, 39–54 | MR
[3] Louson Ch., Khenson R., Chislennoe reshenie zadach metodom naimenshikh kvadratov, Nauka, Moskva, 1986, 232 pp.
[4] Frolov V. N., Optimizatsiya planovykh programm pri soglasovannykh ogranicheniyakh, Nauka, Moskva, 1986, 165 pp.
[5] Cherkassovskii B. V., “Zadachi balansirovki matrits”, Metody matematicheskogo programmirovaniya i programmnoe obespechenie, Izd-vo UrO AN SSSR, Sverdlovsk, 1984, 216–217
[6] Zorkaltsev V. I., Metod naimenshikh kvadratov: geometricheskie svoistva, alternativnye podkhody, prilozheniya, Nauka, Novosibirsk, 1995, 220 pp.
[7] Aganbegyan A. G., Granberg A. G., Ekonomiko-matematicheskii analiz mezhotraslevogo balansa SSSR, Mysl, Moskva, 1968, 357 pp.
[8] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, Moskva, 1968, 544 pp.
[9] Samarskii A. A., Gulin A. V., Chislennye metody, ucheb. posobie dlya vuzov, Nauka, Moskva, 1989, 432 pp.
[10] Zorkaltsev V. I., “Oktaedricheskie i evklidovy proektsii tochki na lineinoe mnogoobrazie”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:3 (2011), 106–118
[11] Rokafellar R., Vypuklyi analiz, Mir, Moskva, 1973, 470 pp.
[12] Mudrov V. I., Kushko V. L., Metody obrabotki izmerenii (kvazipravdopodobnye otsenki), Sov. radio, Moskva, 1976, 192 pp.
[13] Mudrov V. I., Kushko V. L., Metody obrabotki izmerenii: kvazipodobnye otsenki, Nauka, Moskva, 1983, 304 pp.
[14] Lakeev A. V., Noskov S. I., “Metod naimenshikh modulei dlya lineinoi regressii: chislo nulevykh oshibok approksimatsii”, Tr. XV Baikalskoi mezhdun. shkoly-seminara “Metody optimizatsii i ikh prilozheniya”, v. 2, RIO IDSTU SO RAN, Irkutsk, 2011, 117–120
[15] Chernikov S. N., Lineinye neravenstva, Nauka, 1968, 488 pp. | MR
[16] Zorkaltsev V. I., “Proektsii tochki na poliedr”, Zhurn. vychisl. matematiki i mat. fiziki, 53:1 (2013), 4–19 | MR | Zbl
[17] Eremin I. I., Astafev N. I., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, Moskva, 1970, 141 pp.
[18] Astafev N. I., Lineinye neravenstva i vypuklost, Nauka, Moskva, 1982, 162 pp.
[19] Eremin I. I., Mazurov V. D., Astafev N. I., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, Moskva, 1983, 336 pp.
[20] Chebyshev P. L., “Voprosy o naimenshikh velichinakh, svyazannykh s priblizhennym predstavleniem funktsii”, Polnoe sobranie sochinenii, Izd-vo AN SSSR, Moskva; Leningrad, 1944, 151–235
[21] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, Moskva, 1972, 368 pp. | MR
[22] Malozemov V. N., “Poluchenie ravnomernogo priblizheniya funktsii neskolkikh argumentov”, Zhurn. vychisl. matematiki i mat. fiziki, 1970, no. 3, 575–586 | Zbl
[23] Kollatts L., Krabe V., Teoriya priblizhenii. Chebyshevskie priblizheniya i ikh prilozheniya, Nauka, Moskva, 1978, 269 pp.
[24] Haare A., “Die Minkowskische Geometrie und die Annaherung an stetige Funktionen”, Math. Ann., 78:3 (1918), 415–127 | MR
[25] Zorkaltsev V. I., “Metod vnutrennikh tochek: istoriya i perspektivy”, Zhurn. vychisl. matematiki i mat. fiziki, 59:10 (2019), 1649–1665 | Zbl
[26] Zorkaltsev V. I., Kiseleva M. A., Sistemy lineinykh neravenstv, (ucheb. posobie), Irkut. gos. un-t, Irkutsk, 2007, 128 pp.
[27] Gubii E. V., Zorkaltsev V. I., Perzhabinskii S. M., “Chebyshevskie i evklidovy proektsii tochki na lineinoe mnogoobrazie”, Upravlenie bolshimi sistemami, 80, 2019, 6–19 | MR
[28] Zorkaltsev V. I., “Chebyshevskie priblizheniya mogut obkhoditsya bez usloviya Khaara”, Materialy mezhdun. simpoziuma “Dinamicheskie sistemy, optimalnoe upravlenie i matematicheskoe modelirovanie”, Irkut. gos. un-t., Irkutsk, 2019, 29–33