Open questions formulated at the 13th School-Conference on Group Theory Dedicated to V. A. Belonogov's 85th Birthday
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 275-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A review of the main events of the 13th School–Conference on Group Theory, which was held online on August 3–7, 2020, is presented, and a list of open questions with comments is given. Open questions were formulated by the participants at the Open Problems Session held at the end of the school–conference. Among the posed problems there are a series of questions on the characterization of a finite group by its arithmetic invariants such as the spectrum, the Gruenberg–Kegel graph, the solvabile graph, and the degrees of irreducible complex characters (L. S. Kazarin, A. S. Kondrat'ev, and N. V. Maslova); the question of the conjugacy of the Sylow 2-subgroups in locally finite groups with additional conditions on these subgroups (V. D. Mazurov); a series of problems on the characterization of distance-regular graphs by their intersection arrays (A. A. Makhnev); the question of the nilpotent length of a finite solvable group whose Carter subgroup coincides with the Gaschütz subgroup (V. S. Monakhov); a series of problems about the structure of conjugately biprimitively finite groups or Shunkov groups (A. I. Sozutov); a question on the structure of some matrix groups over a residue ring $\mathbb{Z}_n$ for a positive integer $n$ (V. A. Roman'kov); a question on the characterization of Mazurov triples in finite groups (A. V. Timofeenko); and other open questions of the modern group theory and its applications. V. A. Belonogov's brief biography and the list of his main publications are also presented.
Keywords: finite group, spectrum, Gruenberg–Kegel graph, locally finite group, periodic group, Sylow 2-subgroup, Carter subgroup, Gaschütz subgroup, conjugately biprimitively finite group (Shunkov group), Mazurov triple.
Mots-clés : solvabile graph
@article{TIMM_2020_26_3_a22,
     author = {N. V. Maslova and I. N. Belousov and N. A. Minigulov},
     title = {Open questions formulated at the 13th {School-Conference} on {Group} {Theory} {Dedicated} to {V.} {A.} {Belonogov's} 85th {Birthday}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {275--285},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a22/}
}
TY  - JOUR
AU  - N. V. Maslova
AU  - I. N. Belousov
AU  - N. A. Minigulov
TI  - Open questions formulated at the 13th School-Conference on Group Theory Dedicated to V. A. Belonogov's 85th Birthday
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 275
EP  - 285
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a22/
LA  - ru
ID  - TIMM_2020_26_3_a22
ER  - 
%0 Journal Article
%A N. V. Maslova
%A I. N. Belousov
%A N. A. Minigulov
%T Open questions formulated at the 13th School-Conference on Group Theory Dedicated to V. A. Belonogov's 85th Birthday
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 275-285
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a22/
%G ru
%F TIMM_2020_26_3_a22
N. V. Maslova; I. N. Belousov; N. A. Minigulov. Open questions formulated at the 13th School-Conference on Group Theory Dedicated to V. A. Belonogov's 85th Birthday. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 275-285. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a22/

[1] Aleev R.Zh., “Edinitsy polei kharakterov i tsentralnye edinitsy tselochislennykh gruppovykh kolets konechnykh grupp”, Mat. tr., 3:1 (2000), 3–37 | MR | Zbl

[2] Vasilev A.V., Grechkoseeva M.A., Mazurov V.D., “Kharakterizatsiya konechnykh prostykh grupp spektrom i poryadkom”, Algebra i logika, 48:6 (2009), 685–728 | MR | Zbl

[3] Durakov B.E., “O nekotorykh gruppakh 2-ranga odin”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:4 (2019), 64–68 | DOI

[4] Zavarnitsin A.V., “O raspoznavanii konechnykh grupp po grafu prostykh chisel”, Algebra i logika, 45:4 (2006), 390–408 | DOI | MR | Zbl

[5] Karpova E.S., Timofeenko A.V., “O razbieniyakh usechennogo ikosaedra na parketogranniki”, Chebyshevskii sb., 19:2 (2018), 446–474 | DOI

[6] Mazurov V.D., Olshanskii A.Yu., Sozutov A.I., “O beskonechnykh gruppakh konechnogo perioda”, Algebra i logika, 54:2 (2015), 243–251 | DOI | MR | Zbl

[7] Mazurov V.D., Shi V., “Priznak neraspoznavaemosti konechnoi gruppy po spektru”, Algebra i logika, 51:2 (2012), 239–243 | DOI | MR | Zbl

[8] Pryakhin Yu.A., “Vypuklye mnogogranniki, grani kotorykh ravnougolny ili slozheny iz ravnougolnykh”, Zap. nauch. seminara LOMI, 45 (1974), 111–112 | Zbl

[9] Sozutov A.I., “O gruppakh s konechnym engelevym elementom”, Algebra i logika, 58:3 (2019), 376–396 | DOI | Zbl

[10] Abe S., Iiyori N., “A generalization of prime graphs of finite groups”, Hokkaido Math. J., 29:2 (2000), 391–407 | DOI | MR | Zbl

[11] Fukuda T., Komatsu K., “Weber's class number problem in the cyclotomic $\mathbb{Z}_2$-extension of $\mathbb{Q}$, III”, Int. J. Number Theory, 7:6 (2011), 1627–1635 | DOI | MR | Zbl

[12] Gorshkov I.B., Maslova N.V., “The group $J_4\times J_4$ is recognizable by spectrum”, J. Algebra Its Appl. | DOI

[13] Linden F.J. van der., “Class number computations of real abelian number fields”, Math. Comput., 39:160 (1982), 693–707 | DOI | MR | Zbl

[14] Masley J.M., “Solution of small class number problems for cyclotomic fields”, Compositio Math., 33:2 (1976), 179–186 | MR | Zbl

[15] Maslova N.V., Pagon D., “On the realizability of a graph as the Gruenberg-Kegel graph of a finite group”, Sib. elektron. mat. izv., 13 (2016), 89–100 | DOI | MR | Zbl

[16] Mazurov V.D., “A characterizations of finite nonsimple groups by the set of orders of their elements”, Algebra and Logic, 36:3 (1997), 182–192 | DOI | MR | Zbl

[17] Mazurov V.D., “On generation of sporadic simple groups by three involutions two of which commute”, Siberian Math. J., 44:1 (2003), 160–164 | DOI | MR | Zbl

[18] Metsch K., “Improvement of Bruck's completion theorem”, Designs Codes and Cryptography, 1:2 (1991), 99–116 | DOI | MR | Zbl

[19] Metsch K., “On a characterization of bilinear forms graphs”, Europ. J. Comb., 20:4 (1999), 293–306 | DOI | MR | Zbl

[20] Miller J.C., “Class numbers of totally real fields and applications to the Weber class number problem”, Acta Arithmetica, 164 (2014), 381–397 | DOI | MR | Zbl

[21] Miller J.C., “Class numbers of real cyclotomic fields of composite conductor”, LMS J. Comput. Math., 17:A, Algorithmic Number Theory Symposium XI (2014), 404–417 | DOI | MR

[22] Robinson D.J.S., Finiteness conditions and generalized soluble groups, Part 2, Springer-Verlag, Berlin; Heidelberg; N Y, 1972, 254 pp. | DOI | MR

[23] Rososhek SK., “Modified matrix modular cryptosystems”, British J. Math. Computer Science, 5:5 (2015), 613–636 | DOI

[24] Rososhek SK., “Fast and secure modular matrix based digital signature”, British J. Math. Computer Science, 13:1 (2016), 1–20 | DOI

[25] Sinnott W., “On the Stickelberger ideal and circular units of a cyclotomic field”, Ann. Math., 108:1 (1978), 107–134 | DOI | MR | Zbl

[26] Unsolved problems in group theory, [e-resource], The Kourovka notebook, 19, eds. Evgeny Khukhro and Victor Mazurov, Novosibirsk, 2020, 250 pp. URL: http://kourovka-notebook.org | MR

[27] Vasil'ev A.V., “On finite groups isospectral to simple classical groups”, J. Algebra, 423 (2015), 318–374 | DOI | MR | Zbl

[28] Wehrfritz B.A.F., Infinite linear groups, Springer-Verlag, Berlin, Heidelberg, 1973, 229 pp. | DOI | MR | Zbl