@article{TIMM_2020_26_3_a21,
author = {V. I. Shmyrev},
title = {Duality in linear economic models of exchange},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {258--274},
year = {2020},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a21/}
}
V. I. Shmyrev. Duality in linear economic models of exchange. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 258-274. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a21/
[1] Shmyrev V.I., “Ob odnom podkhode k otyskaniyu ravnovesiya v prosteishikh modelyakh obmena”, Dokl. AN SSSR, 268:5 (1983), 1062–1066 | MR | Zbl
[2] Shmyrev V. I., “Zadacha poliedralnoi komplementarnosti”, Sb. nauch. tr., Optimizatsiya, 44(61), In-t matematiki SO AN SSSR, Novosibirsk, 1988, 82–95
[3] Eaves B.C., “A finite algorithm for linear exchange model”, J. Math. Econom., 3:2 (1976), 197–203 | DOI | MR | Zbl
[4] Gale D., “The linear exchange model”, J. Math. Econom., 3:2 (1976), 205–209 | DOI | MR | Zbl
[5] Shmyrev Vadim I., “Polyhedral complementarity approach to equilibrium problem in linear exchange models”, Optimization Algorithms. Examples, ed. Jan Valdman, IntechOpen, London, 2018, 27–46 | DOI
[6] Shmyrev V. I., “Algoritmy poliedralnoi komplementarnosti dlya otyskaniya ravnovesiya v lineinykh modelyakh konkurentnoi ekonomiki”, Diskret. analiz i issledovanie operatsii, 21:2 (2014), 84–101 | MR | Zbl
[7] Shmyrev V. I., “Poliedralnaya komplementarnost na simplekse. Potentsialnost regulyarnykh otobrazhenii”, Sib. zhurn. industr. matematiki, 21:1(73) (2018), 118–128 | DOI | MR | Zbl
[8] Eisenberg E., Gale D., “Consensus of subjective probabilities: The pari-mutuel method”, Annals Math. Stat., 30:1 (1959), 165–168 | DOI | MR | Zbl
[9] Devanur N.R., Papadimitriou C.H., Saberi A., Vazirani V.V., “Market equilibrium via a primal-dual algorithm for a convex program”, JACM, 55:5 (2008), art-no. 22, 18 pp. | DOI | MR
[10] Birnbaum B., Devanur N.R., Xiao L., “Distributed algorithms via gradient descent for Fisher markets”, Proc. 12th ACM Conf. on Electronic Commerce, ACM, N Y, 2011, 127–136 | DOI
[11] Lemke C. E., “Bimatrix equilibrium points and mathematical programming”, Managment Sience, 11:7 (1965), 681–689 | DOI | MR | Zbl
[12] Adsul B., Babu C. S., Gang J., Mehta R., Sohoni M., “A simplex-like algorithm for Fisher markets”, Algorithmic Game Theory (SAGT 2010), Lecture Notes in Computer Science, 6386, eds. S. Kontogiannis, E. Koutsoupias, P.G. Spirakis, Springer, Berlin; Heidelberg, 2010, 18–29 | DOI | MR | Zbl
[13] Garg J., Mehta R., Sohoni M., Vishnoi N. K., “Towards polynomial simplex-like algorithms for market equilibria”, Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2013, 1226–1242 | DOI | Zbl
[14] Devanur N. R., Jain K., Mai T., Vazirani V. V., Yazdanbod S., New convex programs for Fisher's market model and its generalizations, [e-resource], 2016, 23 pp., arXiv: 1603.01257
[15] Cole Richard, Devanur Nikhil, Gkatzelis Vasilis, Jain Kamal, Mai Tung, Vazirani Vijay V., Yazdanbod Sadra, “Convex program duality, Fisher markets, and Nash social welfare”, Proc. 18th ACM Conf. on Economics and Computation, Massachusets Institute of Technology, 2017, 459–460 | DOI
[16] Shmyrev Vadim I., “Polyhedral complementarity and fixed points problem of decreasing regular mappings on simplex”, Proc. VIII Inter. Conf. on Optimization Methods and Applications (OPTIMA-2017), v. 1987, eds. Yu. G. Evtushenko, M. Yu. Khachay, O. V. Khamisov, Yu. A. Kochetov, V. U. Malkova, M. A. Posypkin, Petrovac, 2017, 511–516
[17] Shmyrev V. I., Vvedenie v matematicheskoe programmirovanie, Izd-vo In-ta kompyuternykh issledovanii, Moskva, 2002, 192 pp. | MR
[18] Pontryagin L. S., Osnovy kombinatornoi topologii, Nauka. Gl. red. fiz. -mat. lit., Moskva, 1986, 120 pp. | MR
[19] Rokafellar R., Vypuklyi analiz, Mir, Moskva, 1973, 469 pp.
[20] Vazirani V. V., “Spending constraint utilities, with applications to the adwords market”, Math. Oper. Res., 35:2 (2010) | DOI | MR | Zbl