Duality in linear economic models of exchange
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 258-274 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A further development of an original approach to the equilibrium problem in a linear exchange model and its variations is presented. The conceptual basis of the approach is polyhedral complementarity. The original problem is reduced to a fixed point problem for a piecewise constant point-to-set mapping on the price simplex. For the model with fixed budgets (Fisher model), the emerging mapping is potential, and this provides a new reduction of the equilibrium problem to a pair of optimization problems. The problems are in duality similarly to linear programming problems. This reduction of the Fisher model differs from the well-known reduction of E. Eisenberg and D. Gale and allows a development of two finite algorithms for searching equilibrium prices. In this paper we present a new conceptually complete version of the approach. We give an explicit formulation of the dual variant of the obtained reduction for the Fisher model and its generalizations. The reduction of the equilibrium problem to an optimization problem is also obtained for the general exchange model with variable budgets.
Keywords: exchange model, economic equilibrium, fixed point, polyhedral complementarity, optimization problem, conjugate function, algorithm.
@article{TIMM_2020_26_3_a21,
     author = {V. I. Shmyrev},
     title = {Duality in linear economic models of exchange},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {258--274},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a21/}
}
TY  - JOUR
AU  - V. I. Shmyrev
TI  - Duality in linear economic models of exchange
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 258
EP  - 274
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a21/
LA  - ru
ID  - TIMM_2020_26_3_a21
ER  - 
%0 Journal Article
%A V. I. Shmyrev
%T Duality in linear economic models of exchange
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 258-274
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a21/
%G ru
%F TIMM_2020_26_3_a21
V. I. Shmyrev. Duality in linear economic models of exchange. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 258-274. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a21/

[1] Shmyrev V.I., “Ob odnom podkhode k otyskaniyu ravnovesiya v prosteishikh modelyakh obmena”, Dokl. AN SSSR, 268:5 (1983), 1062–1066 | MR | Zbl

[2] Shmyrev V. I., “Zadacha poliedralnoi komplementarnosti”, Sb. nauch. tr., Optimizatsiya, 44(61), In-t matematiki SO AN SSSR, Novosibirsk, 1988, 82–95

[3] Eaves B.C., “A finite algorithm for linear exchange model”, J. Math. Econom., 3:2 (1976), 197–203 | DOI | MR | Zbl

[4] Gale D., “The linear exchange model”, J. Math. Econom., 3:2 (1976), 205–209 | DOI | MR | Zbl

[5] Shmyrev Vadim I., “Polyhedral complementarity approach to equilibrium problem in linear exchange models”, Optimization Algorithms. Examples, ed. Jan Valdman, IntechOpen, London, 2018, 27–46 | DOI

[6] Shmyrev V. I., “Algoritmy poliedralnoi komplementarnosti dlya otyskaniya ravnovesiya v lineinykh modelyakh konkurentnoi ekonomiki”, Diskret. analiz i issledovanie operatsii, 21:2 (2014), 84–101 | MR | Zbl

[7] Shmyrev V. I., “Poliedralnaya komplementarnost na simplekse. Potentsialnost regulyarnykh otobrazhenii”, Sib. zhurn. industr. matematiki, 21:1(73) (2018), 118–128 | DOI | MR | Zbl

[8] Eisenberg E., Gale D., “Consensus of subjective probabilities: The pari-mutuel method”, Annals Math. Stat., 30:1 (1959), 165–168 | DOI | MR | Zbl

[9] Devanur N.R., Papadimitriou C.H., Saberi A., Vazirani V.V., “Market equilibrium via a primal-dual algorithm for a convex program”, JACM, 55:5 (2008), art-no. 22, 18 pp. | DOI | MR

[10] Birnbaum B., Devanur N.R., Xiao L., “Distributed algorithms via gradient descent for Fisher markets”, Proc. 12th ACM Conf. on Electronic Commerce, ACM, N Y, 2011, 127–136 | DOI

[11] Lemke C. E., “Bimatrix equilibrium points and mathematical programming”, Managment Sience, 11:7 (1965), 681–689 | DOI | MR | Zbl

[12] Adsul B., Babu C. S., Gang J., Mehta R., Sohoni M., “A simplex-like algorithm for Fisher markets”, Algorithmic Game Theory (SAGT 2010), Lecture Notes in Computer Science, 6386, eds. S. Kontogiannis, E. Koutsoupias, P.G. Spirakis, Springer, Berlin; Heidelberg, 2010, 18–29 | DOI | MR | Zbl

[13] Garg J., Mehta R., Sohoni M., Vishnoi N. K., “Towards polynomial simplex-like algorithms for market equilibria”, Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2013, 1226–1242 | DOI | Zbl

[14] Devanur N. R., Jain K., Mai T., Vazirani V. V., Yazdanbod S., New convex programs for Fisher's market model and its generalizations, [e-resource], 2016, 23 pp., arXiv: 1603.01257

[15] Cole Richard, Devanur Nikhil, Gkatzelis Vasilis, Jain Kamal, Mai Tung, Vazirani Vijay V., Yazdanbod Sadra, “Convex program duality, Fisher markets, and Nash social welfare”, Proc. 18th ACM Conf. on Economics and Computation, Massachusets Institute of Technology, 2017, 459–460 | DOI

[16] Shmyrev Vadim I., “Polyhedral complementarity and fixed points problem of decreasing regular mappings on simplex”, Proc. VIII Inter. Conf. on Optimization Methods and Applications (OPTIMA-2017), v. 1987, eds. Yu. G. Evtushenko, M. Yu. Khachay, O. V. Khamisov, Yu. A. Kochetov, V. U. Malkova, M. A. Posypkin, Petrovac, 2017, 511–516

[17] Shmyrev V. I., Vvedenie v matematicheskoe programmirovanie, Izd-vo In-ta kompyuternykh issledovanii, Moskva, 2002, 192 pp. | MR

[18] Pontryagin L. S., Osnovy kombinatornoi topologii, Nauka. Gl. red. fiz. -mat. lit., Moskva, 1986, 120 pp. | MR

[19] Rokafellar R., Vypuklyi analiz, Mir, Moskva, 1973, 469 pp.

[20] Vazirani V. V., “Spending constraint utilities, with applications to the adwords market”, Math. Oper. Res., 35:2 (2010) | DOI | MR | Zbl